Abstract

An ultrashort plasmonic directional coupler based on the hybrid metal–insulator slab waveguide is proposed and analyzed at the telecommunication wavelength of 1550 nm. It is first analyzed using the supermode theory based on mode analysis via the transfer matrix method in the interaction region. Then the 2D model of the coupler, including transition arms, is analyzed using a commercial finite-element method simulator. The hybrid slab waveguide is composed of a metallic layer of silver and two dielectric layers of silica (SiO2) and silicon (Si). The coupler is optimized to have a minimum coupling length and to transfer maximum power considering the layer thicknesses as optimization variables. The resulting coupling length in the submicrometer region along with a noticeable power transfer efficiency are advantages of the proposed coupler compared to previously reported plasmonic couplers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  2. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
    [CrossRef]
  3. R. Zia, M. D. Selker, P. B. Catrysse, and M. I. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [CrossRef]
  4. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
    [CrossRef]
  5. A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  6. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
    [CrossRef]
  7. R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
    [CrossRef]
  8. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).
  9. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Theoretical analysis of hybrid plasmonic waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013).
    [CrossRef]
  10. M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
    [CrossRef]
  11. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  12. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
    [CrossRef]
  13. H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008).
    [CrossRef]
  14. P. Dastmalchi, N. Granpayeh, and M. Rasouli Disfani, “Investigation of coupling length in a semi-cylindrical surface plasmonic coupler,” Appl. Phys. A 103, 741–744 (2011).
    [CrossRef]
  15. P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure,” Opt. Express 19, 7633–7639 (2011).
    [CrossRef]
  16. Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 413–422 (2006).
  17. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, “Design and characterization of dielectric-loaded plasmonic directional couplers,” J. Lightwave Technol. 27, 5521–5528 (2009).
    [CrossRef]
  18. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Polarization-independent hybrid plasmonic coupler for a silicon on insulator platform,” Opt. Lett. 37, 3417–3419 (2012).
    [CrossRef]
  19. E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
    [CrossRef]

2013 (2)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Theoretical analysis of hybrid plasmonic waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013).
[CrossRef]

M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

2012 (1)

2011 (2)

P. Dastmalchi, N. Granpayeh, and M. Rasouli Disfani, “Investigation of coupling length in a semi-cylindrical surface plasmonic coupler,” Appl. Phys. A 103, 741–744 (2011).
[CrossRef]

P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure,” Opt. Express 19, 7633–7639 (2011).
[CrossRef]

2010 (1)

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).

2009 (1)

2008 (3)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008).
[CrossRef]

2007 (1)

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

2006 (2)

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 413–422 (2006).

2005 (3)

2004 (1)

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

1992 (1)

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Aitchison, J. S.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Theoretical analysis of hybrid plasmonic waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013).
[CrossRef]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Polarization-independent hybrid plasmonic coupler for a silicon on insulator platform,” Opt. Lett. 37, 3417–3419 (2012).
[CrossRef]

Alam, M. Z.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Theoretical analysis of hybrid plasmonic waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013).
[CrossRef]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Polarization-independent hybrid plasmonic coupler for a silicon on insulator platform,” Opt. Lett. 37, 3417–3419 (2012).
[CrossRef]

Anemogiannis, E.

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Bai, P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Boltasseva, A.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

Bozhevolnyi, S. I.

Brongersma, M. I.

Brongersma, M. L.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Catrysse, P. B.

Chen, P.

Chu, H.-S.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).

Dastmalchi, P.

P. Dastmalchi, N. Granpayeh, and M. Rasouli Disfani, “Investigation of coupling length in a semi-cylindrical surface plasmonic coupler,” Appl. Phys. A 103, 741–744 (2011).
[CrossRef]

Dereux, A.

Eleftheriades, G. V.

Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 413–422 (2006).

Fan, S.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Glytsis, E. N.

E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

Granpayeh, N.

P. Dastmalchi, N. Granpayeh, and M. Rasouli Disfani, “Investigation of coupling length in a semi-cylindrical surface plasmonic coupler,” Appl. Phys. A 103, 741–744 (2011).
[CrossRef]

Guang, X. G.

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008).
[CrossRef]

Hegde, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).

Holmgaard, T.

Huang, J.

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008).
[CrossRef]

Huang, Q.

Islam, R.

Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 413–422 (2006).

Kjaer, K.

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Larsen, M. S.

Leosson, K.

Li, E.-P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).

Liang, R.

Markey, L.

Marti, J.

R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Martinez, A.

R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Meca, C. G.

R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Mojahedi, M.

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Theoretical analysis of hybrid plasmonic waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013).
[CrossRef]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Polarization-independent hybrid plasmonic coupler for a silicon on insulator platform,” Opt. Lett. 37, 3417–3419 (2012).
[CrossRef]

Nikolajsen, T.

Noghani, M. T.

M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Rasouli Disfani, M.

P. Dastmalchi, N. Granpayeh, and M. Rasouli Disfani, “Investigation of coupling length in a semi-cylindrical surface plasmonic coupler,” Appl. Phys. A 103, 741–744 (2011).
[CrossRef]

Salvador, R.

R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

Samiei, M. H. V.

M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. I. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Veronis, G.

Wang, Y.

Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 413–422 (2006).

Xu, X.

Yu, Z.

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Zhang, X.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Zhao, H.

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. I. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[CrossRef]

Appl. Phys. A (1)

P. Dastmalchi, N. Granpayeh, and M. Rasouli Disfani, “Investigation of coupling length in a semi-cylindrical surface plasmonic coupler,” Appl. Phys. A 103, 741–744 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

A. V. Krasavin and A. V. Zayats, “Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides,” Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 1–3 (2010).

IEEE J. Sel. Top. Quantum Electron. (3)

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Theoretical analysis of hybrid plasmonic waveguide,” IEEE J. Sel. Top. Quantum Electron. 19, 4602008 (2013).
[CrossRef]

R. Salvador, A. Martinez, C. G. Meca, and J. Marti, “Analysis of hybrid dielectric plasmonic waveguides,” IEEE J. Sel. Top. Quantum Electron. 14, 1496–1501 (2008).
[CrossRef]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008).
[CrossRef]

Opt. Express (2)

P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, “Plasmonic filters and optical directional couplers based on wide metal-insulator-metal structure,” Opt. Express 19, 7633–7639 (2011).
[CrossRef]

Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 413–422 (2006).

Opt. Lett. (2)

Phys. Rev. B (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71, 165431 (2005).
[CrossRef]

Physica E (1)

H. Zhao, X. G. Guang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E 40, 3025–3029 (2008).
[CrossRef]

Plasmonics (1)

M. T. Noghani and M. H. V. Samiei, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics 8, 1155–1168 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the DC based on hybrid metal–insulator slab waveguide.

Fig. 2.
Fig. 2.

Results of propagation analysis for HMISW. (a) Effective index of the first two TM-polarized modes. (b) Propagation length of the fundamental mode (TM0).

Fig. 3.
Fig. 3.

Effective index of the symmetrical and antisymmetrical modes of the HMI DC at dM=2090nm, dL=25nm, and dH=80nm. The transverse profile of the E-field major component (Ex) at dM=70nm is also depicted in the inset.

Fig. 4.
Fig. 4.

Coupling length versus H-layer thickness for dL=2,25, and 100 nm at dM=20nm.

Fig. 5.
Fig. 5.

Maximum transferred power ratio versus H-layer thickness for dL=2,25, and 100 nm at dM=20nm.

Fig. 6.
Fig. 6.

Coupling length versus metal thickness for optimum values of Fig. 4.

Fig. 7.
Fig. 7.

Maximum transferred power ratio versus metal thickness for optimum values of Fig. 4.

Fig. 8.
Fig. 8.

Schematic representation of: (a) 3D and (b) 2D model of HMI DC.

Fig. 9.
Fig. 9.

Percentage of the transmitted power to the through, coupled, and isolated ports of the HMI DC as a function of interaction length (L).

Fig. 10.
Fig. 10.

Electric field distribution (|E|) at the input (AD) and output (BC) cross sections of the HMI DC (as indicated in the inset) when L600nm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E(x,z)=A(z)Es(x)+B(z)Ea(x),
A(z)=A0exp(jγsz),B(z)=B0exp(jγaz).
E1(x)=12(Es(x)+Ea(x)),E2(x)=12(Es(x)Ea(x)).
E(x,z)=C(z)E1(x)+D(z)E2(x).
P2(z)=|D(z)|2=|12[exp(jγsz)exp(jγaz)]|2exp[(αs+αa)z]|sinh[((αsαa)2j(βsβa)2)z]|2.
P2(z)exp(2Lpz)·sin2(π2Lcz)Lc=π/|βsβa|,Lp=2/|αs+αa|,
zmax=2πLc·arctan(πLp2Lc)Pmax=exp(2xarctan(x1))1+x2,
F(γ)=j(γsubεsubm11+γcεcm22)m21+γsubγcεsubεcm12=0
γsub=γ2k02εsub,γc=γ2k02εc,
MT=M1M2MN=[m11m12m21m22],Mn=[cos(kndn)jεnknsin(kndn)jknεnsin(kndn)cos(kndn)],
kn=k02εnγ2.
[Hyn(x)ωε0εnEzn(x)]=[cos[kn(xxn)]jknsin[kn(xxn)]jknsin[kn(xxn)]cos[kn(xxn)]]1·[Hyn1(xn)ωε0εnEzn1(xn)],

Metrics