Abstract

A multiple-image encryption and authentication approach by space multiplexing has been proposed. The redundant spaces in the previous security systems employing sparse representation strategy are optimized. With the proposal the information of multiple images can be integrated into a synthesized ciphertext that is convenient for storage and transmission. Only when all the keys are correct can the information of the primary images be authenticated. Computer simulation results have demonstrated that the proposed method is feasible and effective. Moreover, the proposal is also proved to be robust against occlusion and noise attacks.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
    [CrossRef]
  2. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008).
    [CrossRef]
  3. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
    [CrossRef]
  4. W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010).
    [CrossRef]
  5. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef]
  6. G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584–1586 (2004).
    [CrossRef]
  7. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000).
    [CrossRef]
  8. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-ciphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644–1646 (2005).
    [CrossRef]
  9. X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006).
    [CrossRef]
  10. X. C. Cheng, L. Z. Cai, Y. R. Wang, X. F. Meng, H. Zhang, X. F. Xu, X. X. Shen, and G. Y. Dong, “Security enhancement of double-random phase encryption by amplitude modulation,” Opt. Lett. 33, 1575–1577 (2008).
    [CrossRef]
  11. P. Kumar, A. Kumar, J. Joseph, and K. Singh, “Impulse attack free double-random-phase encryption scheme with randomized lens-phase functions,” Opt. Lett. 34, 331–333 (2009).
    [CrossRef]
  12. P. Kumar, J. Joseph, and K. Singh, “Vulnerability of the security enhanced double random phase-amplitude encryption scheme to point spread function attack,” Opt. Lasers Eng. 50, 1196–1201 (2012).
    [CrossRef]
  13. E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011).
    [CrossRef]
  14. G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” J. Opt. A 8, 391–397 (2006).
    [CrossRef]
  15. G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30, 1306–1308 (2005).
    [CrossRef]
  16. D. Amaya, M. Tebaldi, R. Torroba, and N. Bolognini, “Wavelength multiplexing encryption using joint transform correlator architecture,” Appl. Opt. 48, 2099–2104 (2009).
    [CrossRef]
  17. H. Hwang, H. T. Chang, and W. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg–Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34, 3917–3919 (2009).
    [CrossRef]
  18. H. T. Chang, H. E. Huang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011).
    [CrossRef]
  19. H. T. Chang, H. E. Huang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284, 4146–4151 (2011).
    [CrossRef]
  20. A. Alfalou and C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35, 1914–1916 (2010).
    [CrossRef]
  21. A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013).
    [CrossRef]
  22. A. Alfalou and A. Mansour, “Double random phase encryption scheme to multiplex and simultaneous encode multiple images,” Appl. Opt. 48, 5933–5947 (2009).
    [CrossRef]
  23. W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013).
    [CrossRef]

2013 (2)

A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013).
[CrossRef]

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013).
[CrossRef]

2012 (1)

P. Kumar, J. Joseph, and K. Singh, “Vulnerability of the security enhanced double random phase-amplitude encryption scheme to point spread function attack,” Opt. Lasers Eng. 50, 1196–1201 (2012).
[CrossRef]

2011 (3)

2010 (2)

2009 (5)

2008 (2)

2006 (2)

2005 (2)

2004 (1)

2000 (1)

1995 (1)

1994 (1)

B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Alfalou, A.

Amaya, D.

Arcos, S.

Bolognini, N.

Brosseau, C.

Cai, L. Z.

Carnicer, A.

Chang, H. T.

Chen, W.

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013).
[CrossRef]

Chen, X.

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013).
[CrossRef]

Cheng, X. C.

Cho, M.

Dong, G. Y.

Horner, J. L.

B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Huang, H. E.

H. T. Chang, H. E. Huang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284, 4146–4151 (2011).
[CrossRef]

H. T. Chang, H. E. Huang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011).
[CrossRef]

Hwang, H.

Javidi, B.

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013).
[CrossRef]

E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011).
[CrossRef]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
[CrossRef]

B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Joseph, J.

Juvells, I.

Kumar, A.

Kumar, P.

P. Kumar, J. Joseph, and K. Singh, “Vulnerability of the security enhanced double random phase-amplitude encryption scheme to point spread function attack,” Opt. Lasers Eng. 50, 1196–1201 (2012).
[CrossRef]

P. Kumar, A. Kumar, J. Joseph, and K. Singh, “Impulse attack free double-random-phase encryption scheme with randomized lens-phase functions,” Opt. Lett. 34, 331–333 (2009).
[CrossRef]

Lee, C. L.

H. T. Chang, H. E. Huang, C. L. Lee, and M. T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011).
[CrossRef]

H. T. Chang, H. E. Huang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284, 4146–4151 (2011).
[CrossRef]

Lee, M. T.

Lie, W.

Mansour, A.

Meng, X. F.

Montes-Usategui, M.

Peng, X.

Pérez-Cabré, E.

Qin, W.

Refregier, P.

Shen, X. X.

Singh, K.

Situ, G.

Stern, A.

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013).
[CrossRef]

Tebaldi, M.

Torroba, R.

Unnikrishnan, G.

Wang, B.

Wang, Y. R.

Wei, H.

Xu, X. F.

Yu, B.

Zhang, H.

Zhang, J.

Zhang, P.

Zhang, Y.

Adv. Opt. Photon. (1)

Appl. Opt. (3)

IEEE Photon. J. (1)

W. Chen, X. Chen, A. Stern, and B. Javidi, “Phase-modulated optical system with sparse representation for information encoding and authentication,” IEEE Photon. J. 5, 6900113 (2013).
[CrossRef]

J. Opt. A (1)

G. Situ and J. Zhang, “Position multiplexing for multiple-image encryption,” J. Opt. A 8, 391–397 (2006).
[CrossRef]

Opt. Commun. (2)

H. T. Chang, H. E. Huang, and C. L. Lee, “Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain,” Opt. Commun. 284, 4146–4151 (2011).
[CrossRef]

A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013).
[CrossRef]

Opt. Eng. (1)

B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).
[CrossRef]

Opt. Lasers Eng. (1)

P. Kumar, J. Joseph, and K. Singh, “Vulnerability of the security enhanced double random phase-amplitude encryption scheme to point spread function attack,” Opt. Lasers Eng. 50, 1196–1201 (2012).
[CrossRef]

Opt. Lett. (13)

E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011).
[CrossRef]

Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008).
[CrossRef]

G. Situ and J. Zhang, “Multiple-image encryption by wavelength multiplexing,” Opt. Lett. 30, 1306–1308 (2005).
[CrossRef]

H. Hwang, H. T. Chang, and W. Lie, “Multiple-image encryption and multiplexing using a modified Gerchberg–Saxton algorithm and phase modulation in Fresnel-transform domain,” Opt. Lett. 34, 3917–3919 (2009).
[CrossRef]

W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010).
[CrossRef]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
[CrossRef]

G. Situ and J. Zhang, “Double random-phase encoding in the Fresnel domain,” Opt. Lett. 29, 1584–1586 (2004).
[CrossRef]

G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000).
[CrossRef]

A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-ciphertext attacks of optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644–1646 (2005).
[CrossRef]

X. Peng, P. Zhang, H. Wei, and B. Yu, “Known-plaintext attack on optical encryption based on double random phase keys,” Opt. Lett. 31, 1044–1046 (2006).
[CrossRef]

X. C. Cheng, L. Z. Cai, Y. R. Wang, X. F. Meng, H. Zhang, X. F. Xu, X. X. Shen, and G. Y. Dong, “Security enhancement of double-random phase encryption by amplitude modulation,” Opt. Lett. 33, 1575–1577 (2008).
[CrossRef]

P. Kumar, A. Kumar, J. Joseph, and K. Singh, “Impulse attack free double-random-phase encryption scheme with randomized lens-phase functions,” Opt. Lett. 34, 331–333 (2009).
[CrossRef]

A. Alfalou and C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35, 1914–1916 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Architecture of optical DRPE encryption approach.

Fig. 2.
Fig. 2.

Single image encryption and authentication with Chen’s strategy in the DRPE scheme. (a) Encoded image; (b) sparse representation; (c) decoded image from (b); and (d) the output correlation plane.

Fig. 3.
Fig. 3.

Group of RBAMs that qualified for extracting the sparse data from the encrypted images.

Fig. 4.
Fig. 4.

Decryption scheme of the proposal.

Fig. 5.
Fig. 5.

Encryption results with the proposal. (a)–(d) Original images, (e)–(h) encryption results with the DRPE method, (i)–(l) four RBAMs, (m) synthesized ciphertext, and (n) autocorrelation of it.

Fig. 6.
Fig. 6.

(a)–(d) Decryption results with the correct keys and (e)–(h) output correlation planes.

Fig. 7.
Fig. 7.

(a)–(d) Decryption results with the incorrect RBAMs and (e)–(h) output correlation planes.

Fig. 8.
Fig. 8.

Occlusion robustness tests. (a) 25% occluded ciphertext, (b) 50% occluded ciphertext, (c), (d) the corresponding decrypted images, and (e), (f) correlation outputs for (c) and (d).

Fig. 9.
Fig. 9.

Noise robustness tests. (a), (b) Contaminated images; (c), (d) decryption results; and (e), (f) correlation outputs The white noise is distributed within [0; α]. (a), (c), (e) Correspond to α=0.01 and (b), (d), (f) correspond to α=0.1.

Fig. 10.
Fig. 10.

Correlation outputs with respect to R when T percent of the RBAM is incorrect. (a) R=5, T=25; (b) R=5, T=50; (c) R=5, T=75; (d) R=2.5, T=25; (e) R=2.5, T=50; (f) R=2.5, T=75; (g) R=1, T=25; (h) R=1, T=50; and (i) R=1, T=75.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ψ(x,y)=IFT{FT{f(x,y)exp[j2πp(x,y)]}×exp[j2πq(α,β)]},
NC(x,y)=IFT{|FT[f(x,y)]FT[fSR(x,y)]|ω1×FT[f(x,y)]FT[fSR(x,y)]},
ψk(x,y)=IFT{FT{fk(x,y)exp[j2πp(x,y)]}×exp[j2πq(α,β)]}.
ϕk(x,y)=ψk(x,y)Mk(x,y).
ϕ(x,y)=k=1Nϕk(x,y).
Nmax=R[100R],

Metrics