Abstract

We fabricated and tested periodic metal (Ag)–dielectric (SiO2 or TiO2) multilayers with transparency bands in the visible range. For samples with AgTiO2 interfaces, the optical properties exhibited relatively poor predictability, likely due to oxidation of the Ag layers. Ag/SiO2-based multilayers were found to be more predictable and stable, but the relatively low refractive index of SiO2 limits their inherent transparency and pass-band bandwidth. We show that termination of the multilayer with a single high-index layer reduces the admittance mismatch with the ambient media, and thus improves the properties of the transparency band.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Baumeister, “Radiant power flow and absorptance in thin films,” Appl. Opt. 8, 423–436 (1969).
    [CrossRef]
  2. H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
    [CrossRef]
  3. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010), Chap. 8.
  4. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230–239 (1957).
    [CrossRef]
  5. P. H. Lissberger, “Coatings with induced transmission,” Appl. Opt. 20, 95–104 (1981).
    [CrossRef]
  6. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
    [CrossRef]
  7. M. Scalora, M. J. Bloemer, and C. M. Bowden, “Laminated photonic band structures with high conductivity and high transparency: metals under a new light,” Opt. Photon. News 10, 24–27 (1999).
    [CrossRef]
  8. G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
    [CrossRef]
  9. R. S. Bennink, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999).
    [CrossRef]
  10. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
    [CrossRef]
  11. C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A 6, 267–269 (1999).
    [CrossRef]
  12. M. S. Sarto, R. L. Vito, F. Sarto, and M. C. Larciprete, “Nanolayered lightweight flexible shields with multidirectional optical transparency,” IEEE Trans. Electromagn. Compat. 47, 602–611 (2005).
    [CrossRef]
  13. Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
    [CrossRef]
  14. T. W. Allen and R. G. DeCorby, “Assessing the maximum transmittance of periodic metal-dielectric multilayers,” J. Opt. Soc. Am. B 28, 2529–2536 (2011).
    [CrossRef]
  15. T. W. Allen and R. G. DeCorby, “Conditions for admittance-matched tunneling through symmetric metal-dielectric stacks,” Opt. Express 20, A578–A588 (2012).
    [CrossRef]
  16. M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
    [CrossRef]
  17. D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
    [CrossRef]
  18. S. Y. Kim, “Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods,” Appl. Opt. 35, 6703–6707 (1996).
    [CrossRef]
  19. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  20. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  21. A. Piegari and J. Bulir, “Variable narrowband transmission filters with a wide rejection band for spectrometry,” Appl. Opt. 45, 3768–3773 (2006).
    [CrossRef]
  22. H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81, 4287–4289 (2002).
    [CrossRef]
  23. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).
  24. M. C. Zhang, T. W. Allen, and R. G. DeCorby, “Experimental study of optimized surface-plasmon-mediated tunneling in metal-dielectric multilayers,” Appl. Phys. Lett. 103, 071109 (2013).
    [CrossRef]
  25. A. Sytchkova, “Reliable deposition of induced transmission filters with a single metal layer,” Appl. Opt. 50, C90–C94 (2011).
    [CrossRef]
  26. J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Curr. Appl. Phys. 6S1, e62–e66 (2006).
    [CrossRef]

2013 (1)

M. C. Zhang, T. W. Allen, and R. G. DeCorby, “Experimental study of optimized surface-plasmon-mediated tunneling in metal-dielectric multilayers,” Appl. Phys. Lett. 103, 071109 (2013).
[CrossRef]

2012 (1)

2011 (2)

2009 (1)

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

2007 (1)

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

2006 (2)

A. Piegari and J. Bulir, “Variable narrowband transmission filters with a wide rejection band for spectrometry,” Appl. Opt. 45, 3768–3773 (2006).
[CrossRef]

J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Curr. Appl. Phys. 6S1, e62–e66 (2006).
[CrossRef]

2005 (1)

M. S. Sarto, R. L. Vito, F. Sarto, and M. C. Larciprete, “Nanolayered lightweight flexible shields with multidirectional optical transparency,” IEEE Trans. Electromagn. Compat. 47, 602–611 (2005).
[CrossRef]

2004 (1)

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

2003 (1)

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

2002 (1)

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81, 4287–4289 (2002).
[CrossRef]

1999 (3)

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A 6, 267–269 (1999).
[CrossRef]

M. Scalora, M. J. Bloemer, and C. M. Bowden, “Laminated photonic band structures with high conductivity and high transparency: metals under a new light,” Opt. Photon. News 10, 24–27 (1999).
[CrossRef]

R. S. Bennink, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999).
[CrossRef]

1998 (2)

1997 (1)

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

1996 (1)

1981 (1)

1978 (1)

H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
[CrossRef]

1969 (1)

1957 (1)

Akozbek, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Alford, T. L.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81, 4287–4289 (2002).
[CrossRef]

Allee, D. R.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81, 4287–4289 (2002).
[CrossRef]

Allen, T. W.

Baumeister, P. W.

Bennink, R. S.

Berning, P. H.

Bertolotti, M.

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

Bloemer, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Bloemer, M. J.

M. Scalora, M. J. Bloemer, and C. M. Bowden, “Laminated photonic band structures with high conductivity and high transparency: metals under a new light,” Opt. Photon. News 10, 24–27 (1999).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

Bowden, C. M.

M. Scalora, M. J. Bloemer, and C. M. Bowden, “Laminated photonic band structures with high conductivity and high transparency: metals under a new light,” Opt. Photon. News 10, 24–27 (1999).
[CrossRef]

Boyd, R. W.

Bulir, J.

Cho, S.

J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Curr. Appl. Phys. 6S1, e62–e66 (2006).
[CrossRef]

Choi, Y.-K.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

D’Aguanno, G.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

D’Amore, M.

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

DeCorby, R. G.

Djurisic, A. B.

Elazar, J. M.

Fuentes-Hernandez, C.

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Ha, Y.-K.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Kee, C.-S.

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A 6, 267–269 (1999).
[CrossRef]

Kim, H. C.

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81, 4287–4289 (2002).
[CrossRef]

Kim, J.-E.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Kim, K.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A 6, 267–269 (1999).
[CrossRef]

Kim, S. Y.

Kippelen, B.

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

Larciprete, M. C.

M. S. Sarto, R. L. Vito, F. Sarto, and M. C. Larciprete, “Nanolayered lightweight flexible shields with multidirectional optical transparency,” IEEE Trans. Electromagn. Compat. 47, 602–611 (2005).
[CrossRef]

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

Lee, S.

J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Curr. Appl. Phys. 6S1, e62–e66 (2006).
[CrossRef]

Leftheriotis, G.

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

Lim, H.

J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Curr. Appl. Phys. 6S1, e62–e66 (2006).
[CrossRef]

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A 6, 267–269 (1999).
[CrossRef]

Lissberger, P. H.

Macleod, H. A.

H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
[CrossRef]

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010), Chap. 8.

Majewski, M. L.

Mattiucci, N.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Owens, D.

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Park, H. Y.

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Patrikios, D.

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

Piegari, A.

Rakic, A. D.

Sarto, F.

M. S. Sarto, R. L. Vito, F. Sarto, and M. C. Larciprete, “Nanolayered lightweight flexible shields with multidirectional optical transparency,” IEEE Trans. Electromagn. Compat. 47, 602–611 (2005).
[CrossRef]

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

Sarto, M. S.

M. S. Sarto, R. L. Vito, F. Sarto, and M. C. Larciprete, “Nanolayered lightweight flexible shields with multidirectional optical transparency,” IEEE Trans. Electromagn. Compat. 47, 602–611 (2005).
[CrossRef]

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

Scalora, M.

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

M. Scalora, M. J. Bloemer, and C. M. Bowden, “Laminated photonic band structures with high conductivity and high transparency: metals under a new light,” Opt. Photon. News 10, 24–27 (1999).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

Seo, J. Y.

J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Curr. Appl. Phys. 6S1, e62–e66 (2006).
[CrossRef]

Sibilia, C.

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

Sipe, J. E.

Sytchkova, A.

Turner, A. F.

Vito, R. L.

M. S. Sarto, R. L. Vito, F. Sarto, and M. C. Larciprete, “Nanolayered lightweight flexible shields with multidirectional optical transparency,” IEEE Trans. Electromagn. Compat. 47, 602–611 (2005).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

Yianoulis, P.

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

Yoon, Y.-K.

Zhang, M. C.

M. C. Zhang, T. W. Allen, and R. G. DeCorby, “Experimental study of optimized surface-plasmon-mediated tunneling in metal-dielectric multilayers,” Appl. Phys. Lett. 103, 071109 (2013).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (4)

M. C. Zhang, T. W. Allen, and R. G. DeCorby, “Experimental study of optimized surface-plasmon-mediated tunneling in metal-dielectric multilayers,” Appl. Phys. Lett. 103, 071109 (2013).
[CrossRef]

H. C. Kim, T. L. Alford, and D. R. Allee, “Thickness dependence on the thermal stability of silver thin films,” Appl. Phys. Lett. 81, 4287–4289 (2002).
[CrossRef]

M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998).
[CrossRef]

M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007).
[CrossRef]

Curr. Appl. Phys. (1)

J. Y. Seo, S. Cho, H. Lim, and S. Lee, “Optical and structural properties of metal-dielectric photonic band gap structures,” Curr. Appl. Phys. 6S1, e62–e66 (2006).
[CrossRef]

IEEE Trans. Electromagn. Compat. (2)

M. S. Sarto, F. Sarto, M. C. Larciprete, M. Scalora, M. D’Amore, C. Sibilia, and M. Bertolotti, “Nanotechnology of transparent metals for radio frequency electromagnetic shielding,” IEEE Trans. Electromagn. Compat. 45, 586–594 (2003).
[CrossRef]

M. S. Sarto, R. L. Vito, F. Sarto, and M. C. Larciprete, “Nanolayered lightweight flexible shields with multidirectional optical transparency,” IEEE Trans. Electromagn. Compat. 47, 602–611 (2005).
[CrossRef]

J. Opt. A (1)

C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A 6, 267–269 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Acta (1)

H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978).
[CrossRef]

Opt. Commun. (1)

Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Photon. News (1)

M. Scalora, M. J. Bloemer, and C. M. Bowden, “Laminated photonic band structures with high conductivity and high transparency: metals under a new light,” Opt. Photon. News 10, 24–27 (1999).
[CrossRef]

Thin Solid Films (2)

G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997).
[CrossRef]

D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009).
[CrossRef]

Other (3)

P. Yeh, Optical Waves in Layered Media (Wiley, 2005).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental and theoretical transmittance versus wavelength for a three-period TiO2/Ag-based MD stack is shown. Nominal layer thicknesses are indicated in the inset. The blue solid curve is the theoretically predicted transmittance, and the red dotted curve is the theoretically predicted PTmax for a multilayer containing three 32-nm-thick Ag films. Experimental transmittance is shown as measured 1 day (green dashed curve) and 6 months (magenta dashed–dotted curve) after deposition.

Fig. 2.
Fig. 2.

Schematic diagram represents the (five-period) Ag/SiO2-based MD multilayers that were employed for the comparative study. YA is the admittance of the air ambient medium, YG is that for the glass ambient medium, and Yout and Yout are the external admittances viewed from the perspective of the upper or lower Ag film in the multilayer, respectively. For experimental samples AR1 and AR2, each “matching assembly” is a single AR layer, either 75nm SiO2 (sample AR1) or 40nm TiO2 (sample AR2).

Fig. 3.
Fig. 3.

Schematic diagram representing experimental sample IT1 is shown. As for samples AR1 and AR2, the structure contains five Ag layers with nominal thickness 25nm each. The multilayer was designed as an IT filter with peak transmittance at 530nm wavelength.

Fig. 4.
Fig. 4.

(a) Cross-sectional TEM image of structure IT1; the glass substrate is visible at the left part of the image. Note that sample polishing and preparation caused the Ag layers to appear erroneously thick. (b) Camera image showing the three aged samples in front of black text on a white sheet of paper. The mottled pattern on sample AR2 was not apparent immediately after deposition, but became more visible with time.

Fig. 5.
Fig. 5.

Comparison of experimental transmittance (green symbols) with theoretically predicted transmittance is shown for the three samples AR1, AR2, and IT1 described in the main text. In each plot, the red dotted curve is the predicted PTmax for a multilayer containing five Ag films each 25 nm thick. Also shown is the predicted transmittance as calculated assuming 25 nm (solid blue curves) or 30 nm (dashed blue curves) thick Ag films. (a) Results for sample AR1. (b) Results for sample AR2. (c) Results for sample IT1.

Fig. 6.
Fig. 6.

Plots of transmittance at different incidence angles are shown for samples AR1 and AR2: (a) 10°, (b) 30°, and (c) 40°. The measurements were taken using an unpolarized source, and thus represent the average of TE and TM transmittance in each case.

Fig. 7.
Fig. 7.

Plots of transmittance measured at various times after deposition, as indicated by the legend: (a) sample AR1, (b) sample AR2. The samples were stored in air at room temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Yfs=nsubcosδf+infsinδfcosδf+i(nsub/nf)sinδf,

Metrics