Abstract

We present a triangular-range-intensity profile (RIP) spatial-correlation method for 3D range-gated imaging with a depth of super resolution. In this method, spatial sampling volumes with triangular-RIPs are established by matching laser-pulse width and sensor gate time, and then depth information collapsed in gate images can be reconstructed by spatial correlation of overlapped gate images corresponding to sampling volumes. Compared with super-resolution depth mapping under trapezoidal-RIPs, range accuracy and precision are improved, and a large range fluctuation due to noise disturbance is smoothed by noise suppression under triangular-RIPs. In this paper, a proof experiment is demonstrated with a range precision 2.5 times better than that obtained under trapezoidal-RIPs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
    [CrossRef]
  2. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
    [CrossRef]
  3. J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44, 116001 (2005).
    [CrossRef]
  4. J. F. Andersen, J. Busck, and H. Heiselberg, “Long distance high accuracy 3D laser radar and person identification,” Proc. SPIE 5791, 9–16 (2005).
    [CrossRef]
  5. P. Cottin, F. Babin, D. Cantin, and B. Sylvestre, “Active 3D camera design for target capture on Mars orbit,” Proc. SPIE 7684, 768403 (2010).
    [CrossRef]
  6. X. Zhang, H. Yan, and Y. Jiang, “Pulse-shape-free method for long-range three-dimensional active imaging with high linear accuracy,” Opt. Lett. 33, 1219–1221 (2008).
    [CrossRef]
  7. C. Jin, X. Su, Y. Zhao, Y. Zhang, and L. Liu, “Gain-modulated three-dimensional active imaging with depth-independent depth accuracy,” Opt. Lett. 34, 3550–3552 (2009).
    [CrossRef]
  8. M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146–3148 (2007).
    [CrossRef]
  9. M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3D range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
    [CrossRef]
  10. X. Zhang, H. Yan, and Q. Zhou, “Investigations of range accuracy for long-range three-dimensional active imaging,” Chin. Opt. Lett. 9, 061101 (2011).
    [CrossRef]
  11. M. Laurenzis and E. Bacher, “Image coding for three-dimensional range-gated imaging,” Appl. Opt. 50, 3824–3828 (2011).
    [CrossRef]
  12. X. Wang, Y. Zhou, and Y. Liu, “Impact of echo broadening effect on active range-gated imaging,” Chin. Opt. Lett. 10, 101101 (2012).
    [CrossRef]
  13. X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
    [CrossRef]
  14. L. F. Gillespie, “Apparent illuminance as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. 56, 883–887 (1966).
    [CrossRef]
  15. X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
    [CrossRef]
  16. D. Monnin, A. L. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings—Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006 (2007), pp. 938–945.
  17. O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
    [CrossRef]

2012 (1)

2011 (2)

2010 (2)

X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
[CrossRef]

P. Cottin, F. Babin, D. Cantin, and B. Sylvestre, “Active 3D camera design for target capture on Mars orbit,” Proc. SPIE 7684, 768403 (2010).
[CrossRef]

2009 (3)

C. Jin, X. Su, Y. Zhao, Y. Zhang, and L. Liu, “Gain-modulated three-dimensional active imaging with depth-independent depth accuracy,” Opt. Lett. 34, 3550–3552 (2009).
[CrossRef]

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3D range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (1)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[CrossRef]

2005 (2)

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44, 116001 (2005).
[CrossRef]

J. F. Andersen, J. Busck, and H. Heiselberg, “Long distance high accuracy 3D laser radar and person identification,” Proc. SPIE 5791, 9–16 (2005).
[CrossRef]

2004 (1)

1999 (1)

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[CrossRef]

1966 (1)

Andersen, J. F.

J. F. Andersen, J. Busck, and H. Heiselberg, “Long distance high accuracy 3D laser radar and person identification,” Proc. SPIE 5791, 9–16 (2005).
[CrossRef]

Andersson, P.

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[CrossRef]

Babin, F.

P. Cottin, F. Babin, D. Cantin, and B. Sylvestre, “Active 3D camera design for target capture on Mars orbit,” Proc. SPIE 7684, 768403 (2010).
[CrossRef]

Bacher, E.

M. Laurenzis and E. Bacher, “Image coding for three-dimensional range-gated imaging,” Appl. Opt. 50, 3824–3828 (2011).
[CrossRef]

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3D range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Bolander, G.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[CrossRef]

Busck, J.

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44, 116001 (2005).
[CrossRef]

J. F. Andersen, J. Busck, and H. Heiselberg, “Long distance high accuracy 3D laser radar and person identification,” Proc. SPIE 5791, 9–16 (2005).
[CrossRef]

J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
[CrossRef]

Cantin, D.

P. Cottin, F. Babin, D. Cantin, and B. Sylvestre, “Active 3D camera design for target capture on Mars orbit,” Proc. SPIE 7684, 768403 (2010).
[CrossRef]

Carlsson, C.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[CrossRef]

Christnacher, F.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3D range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146–3148 (2007).
[CrossRef]

D. Monnin, A. L. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings—Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006 (2007), pp. 938–945.

Cottin, P.

P. Cottin, F. Babin, D. Cantin, and B. Sylvestre, “Active 3D camera design for target capture on Mars orbit,” Proc. SPIE 7684, 768403 (2010).
[CrossRef]

Fan, S.

X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
[CrossRef]

Gillespie, L. F.

He, J.

X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
[CrossRef]

Heiselberg, H.

J. F. Andersen, J. Busck, and H. Heiselberg, “Long distance high accuracy 3D laser radar and person identification,” Proc. SPIE 5791, 9–16 (2005).
[CrossRef]

J. Busck and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
[CrossRef]

Jiang, Y.

Jin, C.

Laurenzis, M.

Letalick, D.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[CrossRef]

Liu, H.

X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
[CrossRef]

Liu, L.

Liu, Y.

X. Wang, Y. Zhou, and Y. Liu, “Impact of echo broadening effect on active range-gated imaging,” Chin. Opt. Lett. 10, 101101 (2012).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
[CrossRef]

Lutz, Y.

D. Monnin, A. L. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings—Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006 (2007), pp. 938–945.

Metzger, N.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3D range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Monnin, D.

M. Laurenzis, F. Christnacher, and D. Monnin, “Long-range three-dimensional active imaging with superresolution depth mapping,” Opt. Lett. 32, 3146–3148 (2007).
[CrossRef]

D. Monnin, A. L. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings—Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006 (2007), pp. 938–945.

Olsson, H.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[CrossRef]

Schneider, A. L.

D. Monnin, A. L. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings—Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006 (2007), pp. 938–945.

Steinvall, O.

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[CrossRef]

Su, X.

Sylvestre, B.

P. Cottin, F. Babin, D. Cantin, and B. Sylvestre, “Active 3D camera design for target capture on Mars orbit,” Proc. SPIE 7684, 768403 (2010).
[CrossRef]

Wang, X.

X. Wang, Y. Zhou, and Y. Liu, “Impact of echo broadening effect on active range-gated imaging,” Chin. Opt. Lett. 10, 101101 (2012).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
[CrossRef]

Yan, H.

Zhang, X.

Zhang, Y.

Zhao, Y.

Zhou, Q.

Zhou, Y.

X. Wang, Y. Zhou, and Y. Liu, “Impact of echo broadening effect on active range-gated imaging,” Chin. Opt. Lett. 10, 101101 (2012).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
[CrossRef]

Zielenski, I.

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3D range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

Appl. Opt. (2)

Chin. Opt. Lett. (2)

Chin. Phys. Lett. (1)

X. Wang, Y. Zhou, S. Fan, J. He, and Y. Liu, “Range-gated laser stroboscopic imaging for night remote surveillance,” Chin. Phys. Lett. 27, 094203 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45, 034301 (2006).
[CrossRef]

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44, 116001 (2005).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (5)

M. Laurenzis, F. Christnacher, N. Metzger, E. Bacher, and I. Zielenski, “3D range-gated imaging at infrared wavelengths with super-resolution depth mapping,” Proc. SPIE 7298, 729833 (2009).
[CrossRef]

J. F. Andersen, J. Busck, and H. Heiselberg, “Long distance high accuracy 3D laser radar and person identification,” Proc. SPIE 5791, 9–16 (2005).
[CrossRef]

P. Cottin, F. Babin, D. Cantin, and B. Sylvestre, “Active 3D camera design for target capture on Mars orbit,” Proc. SPIE 7684, 768403 (2010).
[CrossRef]

X. Wang, Y. Zhou, S. Fan, Y. Liu, and H. Liu, “Echo broadening effect in range-gated active imaging technique,” Proc. SPIE 7382, 738211 (2009).
[CrossRef]

O. Steinvall, H. Olsson, G. Bolander, C. Carlsson, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[CrossRef]

Other (1)

D. Monnin, A. L. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings—Third International Symposium on 3D Data Processing, Visualization, and Transmission, 3DPVT 2006 (2007), pp. 938–945.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Triangular RIP spatial-correlation method for 3DRGI. (a) Triangular RIP formed by gate viewing. (b) Two adjacent spatial-correlation sampling volumes. (c) 3D reconstruction by spatial correlation of triangular RIPs.

Fig. 2.
Fig. 2.

Time sequence of CCD, laser, and gate in triangular RIP spatial-correlation method.

Fig. 3.
Fig. 3.

Comparison of super-resolution 3DRGI under different RIPs. (a) Under triangular RIPs. (b) Under trapezoidal RIPs.

Fig. 4.
Fig. 4.

(a) Experimental setup. (b) Concrete bridge at sea.

Fig. 5.
Fig. 5.

Experimental results of a bridge pier at sea under triangular RIP. (a) and (b) Two successive gate images. (c) Depth map. (d) Trace across lines A-B of (c).

Fig. 6.
Fig. 6.

Experimental results of a bridge pier at sea under trapezoidal RIP. (a) and (b) Two successive gate images. (c) Depth map. (d) Trace across line A-B of (c).

Fig. 7.
Fig. 7.

Comparison of gray-level curves and gray-level ratio from pixel column 900 to 1000 at the 600th row of gate images under triangular and trapezoidal RIPs. (a) Gray level curves in Figs. 5(a) and 5(b) as well as Figs. 6(a) and 6(b). (b) Gray-level ratio curves under triangular and trapezoidal RIPs.

Fig. 8.
Fig. 8.

Gray-level curves from pixel column 900 to 1000 at the 600th row by averaging six frames of gate images under triangular and trapezoidal RIPs.

Fig. 9.
Fig. 9.

Comparison of range accuracy and precision under triangular RIP and trapezoidal RIP 3D imaging. (a) Target range obtained from six times of experiments. (b) Range accuracy. (c) Range precision.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Itail,iIhead,i+1=Etail,i(ri)Ehead,i+1(ri),
Etail,i(ri)=ξexp[2αri]ri2ELtL(tL2riRic),
Ehead,i+1(ri)=ξexp[2αri]ri2ELtL(tL2Ri+1ric).
ri=τic2+Ihead,i+1Ihead,i+1+Itail,itLc2,
σri=c2[στi2+Ihead,i+12(Ihead,i+1+Itail,i)2σtL2+tL2Itail,i2(Ihead,i+1+Itail,i)4σIhead,i+12+tL2Ihead,i+12(Ihead,i+1+Itail,i)4σItail,i2]1/2,
ri=τic2+Ihead,i+1Ibody,itLc2,
σri=c2(στi2+Ihead,i+12Ibody,i2σtL2+tL2Ibody,i2Ibody,i4σIhead,i+12+tL2Ihead,i+12Ibody,i4σIbody.i2)1/2,
Ihead,i+1=κEhead,i+1(ri)=κξexp[2αri]ri2ELtL(tL2Ri+1ric)=κEhead,i+1(ri)=Ihead,i+1,
Ibody,i=κEbody,i(ri)=κξexp[2αri]ri2EL,
Ihead,i+1+Itail,i=κ(Ehead,i+1+Etail,i)=κξexp[2αri]ri2EL=Ibody,i.
σri<σri,
Enoise=EB+ES+EENE,
SNRhead,i+1=Ehead,i+1EB,i+1+ES,i+1+EENE>Ehead,i+1EB,i+1+ES,i+1+EENE=SNRhead,i+1,

Metrics