Abstract

Refined oil mixtures can be quantified using terahertz-absorption-coefficient spectra and dualistic linear regression fitting. However, when this method was used to quantify mixtures of 90# and 97# gasolines, the absolute error between the real and fitted value was large (25%), and this was due to the component similarity between 90# and 97# gasolines. To solve this problem, the present research addresses the possibility of developing a method that would allow direct, simple, and accurate determination of the 97# gasoline content in gasoline mixtures using a terahertz time-domain pulse coupled to a multiparameter-combined analysis. The multiparameter represents the time delay and amplitude of the first transmission dip and peak in the time-domain pulse. The relationship between these four parameters and the 97# gasoline content in gasoline mixtures was thoroughly investigated, and four distinct calibration models for quantifying gasoline mixtures were built using least square fitting. To enable the development of an informative and accurate calibration model, the four individual models were given proper weights and combined. The weight was determined by the cosine-optimal method, which aimed to determine the most proper weight under the condition of the cosine of the angle between the fitted content vector and the real content vector that reaches the maximum. This method allows the determination of 97# gasoline content in gasoline mixtures with a low absolute error (6%), resulting in predictions that are more accurate and precise than those obtained by the terahertz-absorption-coefficient spectra and dualistic linear regression fitting.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, J. Li, Z. Zeng, J. Li, Z. Tian, and W. Wang, “Terahertz spectroscopy for quantifying refined oil mixtures,” Appl. Opt. 51, 5885–5889 (2012).
    [CrossRef]
  2. L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
    [CrossRef]
  3. E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
    [CrossRef]
  4. R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
    [CrossRef]
  5. J. Li, Z. Tian, Y. Chen, W. Cao, and Z. Zeng, “Distinguishing octane grades in gasoline using terahertz metamaterials,” Appl. Opt. 51, 3258–3262 (2012).
    [CrossRef]
  6. F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
    [CrossRef]
  7. Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
    [CrossRef]
  8. D. Grischkowsky, S. Keiding, M. Van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990).
    [CrossRef]
  9. R. Singh, Engineering the Resonances of Terahertz Metamaterials (Oklahoma State University, 2009).
  10. A. Redo-Sanchez and X. C. Zhang, “Self-referenced method for terahertz wave time-domain spectroscopy,” Opt. Lett. 36, 3308–3310 (2011).
    [CrossRef]
  11. H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
    [CrossRef]
  12. A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0  THz,” Chem. Phys. Lett. 320, 42–48 (2000).
    [CrossRef]

2012

2011

2009

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

2008

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

2007

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

2003

E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
[CrossRef]

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

2000

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0  THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

1990

Al-Douseri, F. M.

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Berry, E.

E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
[CrossRef]

Bourne, N.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

Cao, W.

Chen, Y.

J. Li, Z. Tian, Y. Chen, W. Cao, and Z. Zeng, “Distinguishing octane grades in gasoline using terahertz metamaterials,” Appl. Opt. 51, 3258–3262 (2012).
[CrossRef]

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Clothier, R. H.

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

Engelsen, S. B.

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Fattinger, C.

Grischkowsky, D.

Heilweil, E. J.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0  THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Jeon, S. G.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Jin, B.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Jin, Y. S.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Keiding, S.

Kim, G. J.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Kim, J. I.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Li, J.

Li, Y.

Markelz, A. G.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0  THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Martens, H.

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Nielsen, J. P.

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Redo-Sanchez, A.

Roitberg, A.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0  THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Shi, Y. L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Shon, C. H.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

Singh, R.

R. Singh, Engineering the Resonances of Terahertz Metamaterials (Oklahoma State University, 2009).

Tian, L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Tian, Z.

Van Exter, M.

Wang, W.

Zeng, Z.

Zhang, C. L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zhang, X. C.

A. Redo-Sanchez and X. C. Zhang, “Self-referenced method for terahertz wave time-domain spectroscopy,” Opt. Lett. 36, 3308–3310 (2011).
[CrossRef]

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

Zhao, K.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zhao, S. Q.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Zhou, Q. L.

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Anal. Chem.

H. Martens, J. P. Nielsen, and S. B. Engelsen, “Light scattering and light absorbance separated by extended multiplicative signal correction. Application to near-infrared transmission analysis of powder mixtures,” Anal. Chem. 75, 394–404 (2003).
[CrossRef]

Appl. Opt.

Chem. Phys. Lett.

A. G. Markelz, A. Roitberg, and E. J. Heilweil, “Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0  THz,” Chem. Phys. Lett. 320, 42–48 (2000).
[CrossRef]

Int. J. Infrared Millim. Waves

F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” Int. J. Infrared Millim. Waves 27, 481–503 (2007).
[CrossRef]

J. Biol. Phys.

E. Berry, “Risk perception and safety issues,” J. Biol. Phys. 29, 263–267 (2003).
[CrossRef]

R. H. Clothier and N. Bourne, “Effects of THz exposure on human primary keratinocyte differentiation and viability,” J. Biol. Phys. 29, 179–185 (2003).
[CrossRef]

J. Korean Phys. Soc.

Y. S. Jin, G. J. Kim, C. H. Shon, S. G. Jeon, and J. I. Kim, “Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy,” J. Korean Phys. Soc. 53, 1879–1885 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Sci. China Ser. G

L. Tian, Q. L. Zhou, B. Jin, K. Zhao, S. Q. Zhao, Y. L. Shi, and C. L. Zhang, “Optical property and spectroscopy studies on the selected lubricating oil in the terahertz range,” Sci. China Ser. G 52, 1938–1943 (2009).
[CrossRef]

Other

R. Singh, Engineering the Resonances of Terahertz Metamaterials (Oklahoma State University, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Time-domain waveform. Pulses on the left-hand side are the transmitted THz pulses through an empty quartz cell that are called reference signals (r), and on the right-hand side are the transmitted THz pulses through the quartz cell with samples called sample signals (s). 1,2,3 are the sample numbers. (b) Blowup of sample signals. The volume fraction 0.9 represents where 97# gasoline in the mixture is 90%. The rest follow this rule.

Fig. 2.
Fig. 2.

THz spectra. Curves on the up side are the Fourier-transformed amplitude spectra of reference signals (r) and at the bottom are spectra of sample signals (s).

Fig. 3.
Fig. 3.

(a) Refractive index spectra where 1,2,3 are the sample numbers. Number 1 is pure 97#. Number 2 is a mixture with 90% 97#, leading down to where No. 11 is pure 90#. (b) Absorption coefficient spectra. The numbers have the same meaning as the number in (a).

Fig. 4.
Fig. 4.

(a) Distinction degree curve. (b) Fitted result with absorption coefficient spectra. Fitted 97# volume fractions are 0.873, 0.645, 0.450, 0.447, 0.435, 0.349, 0.397, 0.304, and 0.340.

Fig. 5.
Fig. 5.

Relationship between 97# volume fraction and multiparameter. The points are the measured values, and the red lines are the fitting curves. The table in each figure is the fitting report, including fitting module, intercept, slope, and standard error. (a) Time delay of first dip, (b) amplitude of first dip, (c) time delay of the peak, and (d) amplitude of the peak.

Fig. 6.
Fig. 6.

Combined quantifying value and real value.

Tables (3)

Tables Icon

Table 1. Preparation of Different Gasoline Samplesa

Tables Icon

Table 2. Four Parameters

Tables Icon

Table 3. Result of Multiparameter Quantification Method

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α=1dlnArAs,
n=1+[ϕs(ω)ϕr(ω)]cdω,
T1=21.72536+0.22963V,
A1=2.34293+1.00709V,
T2=22.29181+0.24425V,
A2=3.734342.03662V,
η=cos(X·X^)=t=1Nxtxt^/(t=1Nxt2t=1Nxt^2).
η=i=1mlit=1Nxtxit/(t=1Nxt2LTFL),
maxη(l1,l2,,lm)=i=1mlit=1Nxtxit/(t=1Nxt2LTFL)s.t.{i=1mli=1li0,i=1,2,,m.
maxη(l1,l2,l3,l4)=1.7548l1+1.7102l2+1.7466l3+1.7179l4(l1,l2,l3,l4)F(l1,l2,l3,l4)Ts.t.{l1+l2+l3+l4=1l10,l20,l30,l40,
F=(3.15953.01443.12433.01793.01442.93822.99242.94993.12432.99243.0982.99883.01792.94992.99882.9645),
L=(0,0.25,0.215,0.535)

Metrics