Abstract

The dynamics of electronic excitations and their relaxation in a gold film is studied on the femtosecond time scale with a pump–probe technique. For the pump beam we use pulses with wavelengths centered at 800 nm, 400 nm or both. The surface plasmon resonance (SPR) in Kretschmann’s configuration is used as a sensitive and fast-response probe of the dynamics of the dielectric properties of the gold film. The quantity that is monitored is the intensity of the reflected light at an incidence angle close to the SPR. With changes of the dielectric properties induced by the pump beam and during subsequent relaxation, the amount of the reflected light of the probe beam, sent with a variable delay, also changes, thus providing information on the temporal characteristics of the thermalization process. Special features of SPR probing with short pulses are also accounted for in this work. The thermalization of the electronic subsystem and energy transfer to the lattice are discussed in connection with the two-temperature relaxation model that takes into account temperature dependences of the electronic heat capacity and the electron–phonon coupling.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
    [CrossRef]
  2. C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
    [CrossRef]
  3. H. Inouye and K. Tanaka, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
    [CrossRef]
  4. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
    [CrossRef]
  5. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
    [CrossRef]
  6. W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
    [CrossRef]
  7. X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron temperature measurement in a highly-excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
    [CrossRef]
  8. M. Kiel, H. Mohwald, and M. Bargheer, “Broadband measurements of the transient optical complex dielectric function of a nanoparticle/polymer composite upon ultrafast excitation,” Phys. Rev. B 84, 165121 (2011).
    [CrossRef]
  9. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of nonthermal electron distribution on the electron–phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
    [CrossRef]
  10. R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au,” Phys. Rev. B 51, 11433–11445 (1995).
    [CrossRef]
  11. J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75, 184304 (2007).
    [CrossRef]
  12. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
    [CrossRef]
  13. P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser Photon. Rev. 3, 483–507 (2009).
    [CrossRef]
  14. E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflichenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  15. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. J. Exper. Theor. Phys. 39, 375–377 (1974).
  16. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
    [CrossRef]
  17. M. Bonn, D. N. Denzler, S. Funk, and M. Wolf, “Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
    [CrossRef]
  18. Z. Lin and L. V. Zhigilei, “Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations,” Proc. SPIE 6261, 62610U (2006).
    [CrossRef]
  19. R. Rosei, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory,” Phys. Rev. B 10, 474–483 (1974).
    [CrossRef]
  20. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Ultrafast optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1814–1823 (1999).
    [CrossRef]
  21. E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
    [CrossRef]
  22. A. Devizis and V. Gulbinas, “Ultrafast dynamics of the real and imaginary permittivity parts of a photoexcited silver layer revealed by surface plasmon resonance,” Appl. Opt. 47, 1632–1637 (2008).
    [CrossRef]

2011

M. Kiel, H. Mohwald, and M. Bargheer, “Broadband measurements of the transient optical complex dielectric function of a nanoparticle/polymer composite upon ultrafast excitation,” Phys. Rev. B 84, 165121 (2011).
[CrossRef]

2009

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser Photon. Rev. 3, 483–507 (2009).
[CrossRef]

2008

2007

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75, 184304 (2007).
[CrossRef]

2006

Z. Lin and L. V. Zhigilei, “Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations,” Proc. SPIE 6261, 62610U (2006).
[CrossRef]

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

2002

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
[CrossRef]

2000

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

M. Bonn, D. N. Denzler, S. Funk, and M. Wolf, “Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

1999

1998

H. Inouye and K. Tanaka, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

1995

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au,” Phys. Rev. B 51, 11433–11445 (1995).
[CrossRef]

1994

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron temperature measurement in a highly-excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[CrossRef]

1992

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of nonthermal electron distribution on the electron–phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

1987

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[CrossRef]

1974

R. Rosei, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory,” Phys. Rev. B 10, 474–483 (1974).
[CrossRef]

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. J. Exper. Theor. Phys. 39, 375–377 (1974).

1971

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflichenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Achermann, M.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

Acioli, L. H.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. J. Exper. Theor. Phys. 39, 375–377 (1974).

Averitt, R. D.

Bargheer, M.

M. Kiel, H. Mohwald, and M. Bargheer, “Broadband measurements of the transient optical complex dielectric function of a nanoparticle/polymer composite upon ultrafast excitation,” Phys. Rev. B 84, 165121 (2011).
[CrossRef]

Bokor, J.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[CrossRef]

Bonn, M.

M. Bonn, D. N. Denzler, S. Funk, and M. Wolf, “Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Borisov, A. G.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

Christofilos, D.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

Chulkov, E. V.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

Conrad, U.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

Del Fatti, N.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

Denzler, D. N.

M. Bonn, D. N. Denzler, S. Funk, and M. Wolf, “Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Devizis, A.

Downer, M. C.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron temperature measurement in a highly-excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Echenique, P. M.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

Eesley, G. L.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[CrossRef]

Fann, W. S.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[CrossRef]

Fujimoto, J. G.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[CrossRef]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[CrossRef]

Funk, S.

M. Bonn, D. N. Denzler, S. Funk, and M. Wolf, “Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Gauyacq, J. P.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

Groeneveld, R. H. M.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au,” Phys. Rev. B 51, 11433–11445 (1995).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of nonthermal electron distribution on the electron–phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

Güdde, J.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

Gulbinas, V.

Guo, C.

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75, 184304 (2007).
[CrossRef]

Halas, N. J.

Hohlfeld, J.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

Inouye, H.

H. Inouye and K. Tanaka, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

Ippen, E. P.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[CrossRef]

Jähnke, V.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

Kaiser, A.

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
[CrossRef]

Kapeliovich, B. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. J. Exper. Theor. Phys. 39, 375–377 (1974).

Kiel, M.

M. Kiel, H. Mohwald, and M. Bargheer, “Broadband measurements of the transient optical complex dielectric function of a nanoparticle/polymer composite upon ultrafast excitation,” Phys. Rev. B 84, 165121 (2011).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflichenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Lagendijk, A.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au,” Phys. Rev. B 51, 11433–11445 (1995).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of nonthermal electron distribution on the electron–phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

Lee, Y.-S.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron temperature measurement in a highly-excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Lienau, C.

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser Photon. Rev. 3, 483–507 (2009).
[CrossRef]

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[CrossRef]

Lin, Z.

Z. Lin and L. V. Zhigilei, “Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations,” Proc. SPIE 6261, 62610U (2006).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Matthias, E.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

Mohwald, H.

M. Kiel, H. Mohwald, and M. Bargheer, “Broadband measurements of the transient optical complex dielectric function of a nanoparticle/polymer composite upon ultrafast excitation,” Phys. Rev. B 84, 165121 (2011).
[CrossRef]

Perelman, T. L.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. J. Exper. Theor. Phys. 39, 375–377 (1974).

Pomraenke, R.

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser Photon. Rev. 3, 483–507 (2009).
[CrossRef]

Rethfeld, B.

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
[CrossRef]

Riffe, D. M.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron temperature measurement in a highly-excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Ropers, C.

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser Photon. Rev. 3, 483–507 (2009).
[CrossRef]

Rosei, R.

R. Rosei, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory,” Phys. Rev. B 10, 474–483 (1974).
[CrossRef]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Sánchez-Portal, D.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[CrossRef]

Silkin, V. M.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

Simon, G.

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
[CrossRef]

Sprik, R.

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au,” Phys. Rev. B 51, 11433–11445 (1995).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of nonthermal electron distribution on the electron–phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Storz, R.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[CrossRef]

Sun, C.-K.

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[CrossRef]

Tanaka, K.

H. Inouye and K. Tanaka, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

Tom, H. W. K.

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[CrossRef]

Tzortzakis, S.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

Vallée, F.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[CrossRef]

Vasa, P.

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser Photon. Rev. 3, 483–507 (2009).
[CrossRef]

Vicanek, M.

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
[CrossRef]

Voisin, C.

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

Wang, J.

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75, 184304 (2007).
[CrossRef]

Wang, X. Y.

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron temperature measurement in a highly-excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

Wellershoff, S.-S.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

Westcott, S. L.

Wolf, M.

M. Bonn, D. N. Denzler, S. Funk, and M. Wolf, “Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Zhigilei, L. V.

Z. Lin and L. V. Zhigilei, “Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations,” Proc. SPIE 6261, 62610U (2006).
[CrossRef]

Zhukov, V. P.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

Appl. Opt.

Chem. Phys.

J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[CrossRef]

Chem. Rev.

E. V. Chulkov, A. G. Borisov, J. P. Gauyacq, D. Sánchez-Portal, V. M. Silkin, V. P. Zhukov, and P. M. Echenique, “Electronic excitations in metals and at metal surfaces,” Chem. Rev. 106, 4160–4206 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

P. Vasa, C. Ropers, R. Pomraenke, and C. Lienau, “Ultra-fast nano-optics,” Laser Photon. Rev. 3, 483–507 (2009).
[CrossRef]

Nat. Photonics

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3, 55–58 (2008).
[CrossRef]

Phys. Rev. B

M. Bonn, D. N. Denzler, S. Funk, and M. Wolf, “Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport,” Phys. Rev. B 61, 1101–1105 (2000).
[CrossRef]

R. Rosei, “Temperature modulation of the optical transitions involving the Fermi surface in Ag: theory,” Phys. Rev. B 10, 474–483 (1974).
[CrossRef]

C.-K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B 50, 15337–15348 (1994).
[CrossRef]

H. Inouye and K. Tanaka, “Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system,” Phys. Rev. B 57, 11334–11340 (1998).
[CrossRef]

N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
[CrossRef]

B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
[CrossRef]

W. S. Fann, R. Storz, H. W. K. Tom, and J. Bokor, “Electron thermalization in gold,” Phys. Rev. B 46, 13592–13595 (1992).
[CrossRef]

X. Y. Wang, D. M. Riffe, Y.-S. Lee, and M. C. Downer, “Time-resolved electron temperature measurement in a highly-excited gold target using femtosecond thermionic emission,” Phys. Rev. B 50, 8016–8019 (1994).
[CrossRef]

M. Kiel, H. Mohwald, and M. Bargheer, “Broadband measurements of the transient optical complex dielectric function of a nanoparticle/polymer composite upon ultrafast excitation,” Phys. Rev. B 84, 165121 (2011).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Effect of nonthermal electron distribution on the electron–phonon energy relaxation process in noble metals,” Phys. Rev. B 45, 5079–5082 (1992).
[CrossRef]

R. H. M. Groeneveld, R. Sprik, and A. Lagendijk, “Femtosecond spectroscopy of electron–electron and electron–phonon energy relaxation in Ag and Au,” Phys. Rev. B 51, 11433–11445 (1995).
[CrossRef]

J. Wang and C. Guo, “Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals,” Phys. Rev. B 75, 184304 (2007).
[CrossRef]

Phys. Rev. Lett.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett. 58, 1680–1683 (1987).
[CrossRef]

Proc. SPIE

Z. Lin and L. V. Zhigilei, “Thermal excitation of d band electrons in Au: implications for laser-induced phase transformations,” Proc. SPIE 6261, 62610U (2006).
[CrossRef]

Sov. Phys. J. Exper. Theor. Phys.

S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. J. Exper. Theor. Phys. 39, 375–377 (1974).

Z. Phys.

E. Kretschmann, “Die Bestimmung optischer Konstanten von Metallen durch Anregung von oberflichenplasmaschwingungen,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the experimental setup.

Fig. 2.
Fig. 2.

Example showing changes in the normalized reflected intensity at the SPR with cw radiation at 800 nm induced by a 7% increase of the dielectric constant of the gold film. The red arrow indicates the direction of the shift of the SPR curve. The blue arrows indicate the sign and the magnitude of the relative changes of the intensity on two photodiodes, positioned on the steep slopes of the SPR curve, as indicated by the vertical blue lines. The step in the SPR curves occurring at 41.5deg is due to the total internal reflection.

Fig. 3.
Fig. 3.

Shift of the SPR curve in response to a 7% change of (a) εr, (b) εi. Blue curves show the initial position; red curves show changed position. Note a predominantly angular shift for a change of εr and a predominantly intensity (vertical) shift for a change of εi.

Fig. 4.
Fig. 4.

Characteristics of the reflected probe pulse: (a) spectral density distribution: the angular position of the SPR is slightly shifted for different wavelengths; (b) angular dependence of the total reflectivity (solid red line). For comparison the reflectivity of a monochromatic 800 nm radiation is shown (dashed blue line); the experimental SPR curve is shown as a black solid line.

Fig. 5.
Fig. 5.

Recorded relaxation signal after excitation by radiation of 800nm pump pulse with laser fluence (a) F=11mJ/cm2 and (b) F=32mJ/cm2. The SPR probe mainly registered changes in εr. The red solid lines show fits with an exponential decay, and the decay times are also shown.

Fig. 6.
Fig. 6.

Recorded relaxation signal after excitation by a 400 nm pulse with a laser fluence F=2.1mJ/cm2.

Fig. 7.
Fig. 7.

Recorded relaxation signal after excitation by a pulse at 800 nm, F=60mJ/cm2, followed with a 1.3 ps delay by a pulse at 400 nm, F=1.4mJ/cm2.

Fig. 8.
Fig. 8.

Calculated temporal dependences of (a) electron temperature and (b) lattice temperature for three laser fluences of the incident beam at 800 nm (from bottom to top): F=10,30,80mJ/cm2.

Fig. 9.
Fig. 9.

Calculated temporal dependences of (a) electron temperature and (b) lattice temperature for a dual pulse excitation with incident fluences F=60mJ/cm2 (800 nm) and F=1.0mJ/cm2 (400 nm).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δθmin(Δεr)=0.046Δεr+1.1×103(Δεr)2,ΔRmin(Δεr)=0.0099Δεr+1.1×106(Δεr)2,Δθmin(Δεi)=0.0036Δεi+0.0021(Δεi)2,ΔRmin(Δεi)=0.13Δεi0.0085(Δεi)2,
Δθmin(Δεr)=0.050Δεr1.1×103(Δεr)2,ΔRmin(Δεr)=0.013Δεr+0.00032(Δεr)2,Δθmin(Δεi)=0.0020Δεi+0.0040(Δεi)2,ΔRmin(Δεi)=0.085Δεi0.002(Δεi)2.
CedTedt=g(TeTl)KeB(TeTenv)+Q(t),
CldTldt=g(TeTl)(TlTenv)/τl,
g(Te)=g0[1+f2(T)],f2(T)=14[(Te/T2)2.8/[1+(Te/T2)2.8],
Ce(Te)=AeTe[1+f1(Te)],f1(Te)=2.5(Te/T1)4/[1+(Te/T1)4]exp(Te/T3),

Metrics