Abstract

We have designed a tapered-rib waveguide and numerically studied the generation of supercontinuum using such waveguides. The Air-SF57 glassSiO2 waveguide is 3 cm long, with a varying etched depth to manage the total dispersion. Numerical simulations are conducted for input pulses at a wavelength of 1.55 μm with a width of 150 fs and peak power of 5 kW. The proposed waveguide geometry greatly broadens the output spectrum, extending from 1 to 6μm, caused by the continuous modification of the phase-matching condition for the generated waves.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  2. J. M. Dudley and J. R. Talor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  3. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [CrossRef]
  4. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T.-P. M. Man, and P. S. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
    [CrossRef]
  5. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
    [CrossRef]
  6. J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
    [CrossRef]
  7. Z. Chen, S. Ma, and N. K. Dutta, “An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper,” Opt. Commun. 283, 3076–3080 (2010).
    [CrossRef]
  8. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
    [CrossRef]
  9. D. I. Yeom, E. C. Mägi, M. R. Lamont, M. A. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett. 33, 660–662 (2008).
    [CrossRef]
  10. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
    [CrossRef]
  11. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
    [CrossRef]
  12. R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
    [CrossRef]
  13. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
    [CrossRef]
  14. A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
    [CrossRef]
  15. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
    [CrossRef]
  16. Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
    [CrossRef]
  17. O. Fedotova, A. Husakou, and J. Herrmann, “Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion,” Opt. Express 14, 1512–1517 (2006).
    [CrossRef]
  18. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [CrossRef]
  19. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
    [CrossRef]
  20. V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
    [CrossRef]
  21. S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
    [CrossRef]
  22. E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).
  23. P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
    [CrossRef]
  24. S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).
  25. Schott Glass Catalogue, 2003.
  26. T. E. Murphy, Software available at http://www.photonics.umd.edu .
  27. J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
    [CrossRef]
  28. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
    [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  30. L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
    [CrossRef]
  31. M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
    [CrossRef]
  32. W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
    [CrossRef]

2012

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
[CrossRef]

2011

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[CrossRef]

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

2010

Z. Chen, S. Ma, and N. K. Dutta, “An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper,” Opt. Commun. 283, 3076–3080 (2010).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef]

2009

2008

2007

L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
[CrossRef]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[CrossRef]

2006

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

O. Fedotova, A. Husakou, and J. Herrmann, “Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion,” Opt. Express 14, 1512–1517 (2006).
[CrossRef]

J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

2004

2003

2002

2000

M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
[CrossRef]

1998

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).

1996

L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
[CrossRef]

1991

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

1987

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

Aggarwal, I. D.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef]

Agrawal, G. P.

Aguiló, M.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Andersen, T.

Asimakis, S.

Birks, T. A.

Bolaños, W.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Bongaerts, J. H. H.

M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
[CrossRef]

Brambilla, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

Brandon Shaw, L.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Byer, R. L.

Cantelar, E.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Carvajal, J. J.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Chau, A. H. L.

Chen, Z.

Z. Chen, S. Ma, and N. K. Dutta, “An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper,” Opt. Commun. 283, 3076–3080 (2010).
[CrossRef]

Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
[CrossRef]

Choi, D. Y.

Coen, S.

Dianov, E. M.

Díaz, F.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

J. M. Dudley and J. R. Talor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Dutta, N. K.

Z. Chen, S. Ma, and N. K. Dutta, “An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper,” Opt. Commun. 283, 3076–3080 (2010).
[CrossRef]

Ebendorff-Heidepriem, H.

Efimov, A.

Eggleton, B. J.

Fedotova, O.

Feng, X.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

Finazzi, V.

Flanagan, J. C.

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

Frampton, K.

Frampton, K. E.

Friberg, S.

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

Fu, L.

Fujino, S.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).

Gattass, R. R.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Granzow, N.

Hansen, K.

Harvey, J. D.

Heidt, A. M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Herrmann, J.

O. Fedotova, A. Husakou, and J. Herrmann, “Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion,” Opt. Express 14, 1512–1517 (2006).
[CrossRef]

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[CrossRef]

Hilligsøe, K. M.

Horak, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Hu, J.

Husakou, A.

Husakou, A. V.

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[CrossRef]

Ibsen, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Ijiri, H.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).

Kalashnikov, V. L.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[CrossRef]

Kawanishi, S.

Keiding, S.

Knight, J. C.

Kristiansen, R.

Krol, D. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Kubota, H.

Lamont, M. R.

Lamont, M. R. E.

Larsen, J.

Leong, J. Y.

J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

Leonhardt, R.

Lifante, G.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Lin, Q.

Loh, W. H.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Luther-Davies, B.

Ma, S.

Z. Chen, S. Ma, and N. K. Dutta, “An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper,” Opt. Commun. 283, 3076–3080 (2010).
[CrossRef]

Madden, S.

Mägi, E. C.

Man, T.-P. M.

Marandi, A.

Mateos, X.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Menyuk, C. R.

Mølmer, K.

Monro, T. M.

Moore, R. C.

Morinaga, K.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).

Morl, L.

L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
[CrossRef]

Murugan, G. S.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Nguyen, V. Q.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Nielsen, C.

Nolting, H. P.

L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
[CrossRef]

Ortigosa-Blanch, A.

Paulsen, H.

Peters, J. F.

M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
[CrossRef]

Petropoulos, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
[CrossRef]

Petrovich, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Plotnichenko, V. G.

Poletti, F.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

Ponzo, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Price, J. H.

J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

Price, J. H. V.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Pureza, P. C.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Reier, F.

L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
[CrossRef]

Richardson, D. J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

J. Y. Leong, P. Petropoulos, J. H. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
[CrossRef]

Riese, D.

M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
[CrossRef]

Roelens, M. A.

Rudy, C. W.

Russell, P. S. J.

Rutt, H. N.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Sanghera, J. S.

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef]

Schmidt, M. A.

Shaw, L. B.

Shi, J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

Shimizu, F.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).

Siegel, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

Smith, P.

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

Solis, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

Sorokin, E.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[CrossRef]

Sorokina, I. T.

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[CrossRef]

Stark, S. P.

Stoll, L.

L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
[CrossRef]

Subramanian, A.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Talor, J. R.

J. M. Dudley and J. R. Talor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Tanaka, M.

Taylor, A. J.

Tverjanovich, A. S.

Van der Veen, J. F.

M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
[CrossRef]

Vodopyanov, K. L.

Vogel, E. M.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Wadsworth, W. J.

Weber, M. J.

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Weinert, C. M.

L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
[CrossRef]

Wilkinson, J. S.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Wondraczek, L.

Yamaguchi, S.

Yamamoto, T.

Yeom, D. I.

Yin, L.

Zwanenburg, M. J.

M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
[CrossRef]

Appl. Phys. B

A. V. Husakou and J. Herrmann, “Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses,” Appl. Phys. B 77, 227–234 (2003).
[CrossRef]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87, 37–44 (2007).
[CrossRef]

Appl. Surf. Sci.

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

Electron. Lett.

L. Morl, C. M. Weinert, F. Reier, L. Stoll, and H. P. Nolting, “Uncladded InGaAsP/InP rib waveguides with integrated thickness tapers for efficient fibre-chip butt coupling,” Electron. Lett. 32, 36–38 (1996).
[CrossRef]

IEEE J. Quantum Electron.

S. Friberg and P. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089–2094 (1987).
[CrossRef]

J. Jpn. Inst. Met. Mater.

S. Fujino, H. Ijiri, F. Shimizu, and K. Morinaga, “Measurement of viscosity of multi-component glasses in the wide range for fiber drawing,” J. Jpn. Inst. Met. Mater. 62, 106–110 (1998).

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

Z. Chen, S. Ma, and N. K. Dutta, “An efficient method for supercontinuum generation in dispersion-tailored lead-silicate fiber taper,” Opt. Commun. 283, 3076–3080 (2010).
[CrossRef]

Opt. Express

T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 m in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003).
[CrossRef]

P. Petropoulos, H. Ebendorff-Heidepriem, V. Finazzi, R. C. Moore, K. Frampton, D. J. Richardson, and T. M. Monro, “Highly nonlinear and anomalously dispersive lead silicate glass holey fibers,” Opt. Express 11, 3568–3573 (2003).
[CrossRef]

K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004).
[CrossRef]

O. Fedotova, A. Husakou, and J. Herrmann, “Supercontinuum generation in planar rib waveguides enabled by anomalous dispersion,” Opt. Express 14, 1512–1517 (2006).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef]

Z. Chen, A. J. Taylor, and A. Efimov, “Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper,” Opt. Express 17, 5852–5860 (2009).
[CrossRef]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18, 6722–6739 (2010).
[CrossRef]

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. S. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19, 21003–21010 (2011).
[CrossRef]

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20, 24218–24225 (2012).
[CrossRef]

Opt. Fiber Technol.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol. 18, 327–344 (2012).
[CrossRef]

R. R. Gattass, L. Brandon Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345–348 (2012).
[CrossRef]

Opt. Lett.

Opt. Mater.

W. Bolaños, J. J. Carvajal, X. Mateos, G. S. Murugan, A. Subramanian, J. S. Wilkinson, E. Cantelar, G. Lifante, M. Aguiló, and F. Díaz, “KY0.58Gd0.22Lu0.17Tm0.03(WO4)2 buried rib waveguide lasers,” Opt. Mater. 34, 475–480 (2011).
[CrossRef]

Phys. Chem. Glasses

E. M. Vogel, M. J. Weber, and D. M. Krol, “Nonlinear optical phenomena in glass,” Phys. Chem. Glasses 32, 231–254 (1991).

Physica B

M. J. Zwanenburg, J. H. H. Bongaerts, J. F. Peters, D. Riese, and J. F. Van der Veen, “Focusing of coherent x-rays in a tapered planar waveguide,” Physica B 283, 285–288 (2000).
[CrossRef]

Proc. SPIE

J. H. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, V. Finazzi, J. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Non-silica microstructured optical fibers for mid-IR supercontinuum generation from 2 μm–5 μm,” Proc. SPIE 6102, 61020A (2006).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other

J. M. Dudley and J. R. Talor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Schott Glass Catalogue, 2003.

T. E. Murphy, Software available at http://www.photonics.umd.edu .

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross section of the AirSF57SiO2 rib waveguide. W, d, and h are the rib width, outer slab thickness, and etched depth, respectively.

Fig. 2.
Fig. 2.

Dispersion profile of SF57 rib waveguide with different etched depths h. The rib width W and outer slab thickness d are 4 and 0.5 μm, respectively.

Fig. 3.
Fig. 3.

Schematic of the tapered SF57 rib waveguide.

Fig. 4.
Fig. 4.

Output spectrum for SF57 rib waveguide with h=0.95μm. The solid lines without noise near 1.55 μm represent the input pulse spectrum.

Fig. 5.
Fig. 5.

Output spectrum for SF57 rib waveguide with h=0.6μm. The first and second ZDWs are 1.20 and 1.91 μm, respectively. The solid lines without noise near 1.55 μm represent the input pulse spectrum.

Fig. 6.
Fig. 6.

Output spectrum for SF57 rib waveguide with h=0.7μm. The first and second ZDWs are 1.20 and 2.13 μm, respectively. The solid lines without noise near 1.55 μm represent the input-pulse spectrum.

Fig. 7.
Fig. 7.

Spectrum evolution along the propagation distance as shown for the proposed tapered SF57 rib waveguide with continuously varied etched depth.

Fig. 8.
Fig. 8.

Output spectra for different tapering rates: h=h0[1+(z/z0)k], where (a) k=1 (linear form); (b) k=1/2; (c) k=1/4; (d) k=1/6; and (e) k=1/8. h0=0.6μm and 0.9 μm are the etched depths at the input and output, respectively. The waveguide length is 3 cm. The solid lines without noise near 1.55 μm represent the input-pulse spectrum.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n(λ)=(1+A1λ2λ2B1+A2λ2λ2B2+A3λ2λ2B3)12,
Az+α2A+k2ik1k!βkkATk=iγ(1+iω0T)(A+R(T)|A(z,TT)|2dT),
hR(t)=τ12+τ22τ1τ22exp(tτ2)sin(tτ1),
h=h0[1+(zz0)14],

Metrics