Abstract

We demonstrated a high-peak-power, single-frequency, single-mode, linearly polarized, nanosecond all-fiber laser in master oscillator power amplifier configuration. The pulsed seed was generated by modulating a single-frequency continuous wave laser at 1064 nm. The short pulse width (3.2ns) of the pulsed seed prevented the onset of stimulated Brillouin scattering in the 10 μm-core single-transverse-mode polarization-maintaining ytterbium-doped fiber of the main amplifier. In order to compensate self-phase modulation-induced spectral broadening, a phase modulator was employed to control the phase of the pulsed seed, and the linewidth of the output pulses were reduced from 1.22GHz to 185MHz at the peak power of 1.47 kW.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shi, M. Leigh, J. Zong, Z. Yao, and S. Jiang, “Photonic narrow linewidth GHz source based on highly codoped phosphate glass fiber lasers in a single MOPA chain,” IEEE Photon. Technol. Lett. 20, 69–71 (2008).
    [CrossRef]
  2. E. B. Petersen, W. Shi, D. T. Nguyen, Z. Yao, J. Zong, A. Chavez-Pirson, and N. Peyghambarian, “Enhanced terahertz source based on external cavity difference-frequency generation using monolithic single-frequency pulsed fiber lasers,” Opt. Lett. 35, 2170–2172 (2010).
    [CrossRef]
  3. C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
    [CrossRef]
  4. Y. Liu, J. Liu, and W. Chen, “Eye-safe, single-frequency pulsed all-fiber laser for Doppler wind lidar,” Chin. Opt. Lett. 9, 090604 (2011).
    [CrossRef]
  5. W. Shi, E. B. Petersen, D. T. Nguyen, Z. Yao, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “220  μJ monolithic single-frequency Q-switched fiber laser at 2  μm by using highly Tm-doped germanate fibers,” Opt. Lett. 36, 3575–3577 (2011).
    [CrossRef]
  6. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2  μm,” Opt. Lett. 34, 3713–3715 (2009).
    [CrossRef]
  7. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, “High-energy in-fiber pulse amplification for coherent lidar applications,” Opt. Lett. 29, 2590–2592 (2004).
    [CrossRef]
  8. R. Su, P. Zhou, H. Xiao, X. Wang, and X. Xu, “150  W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format,” Appl. Opt. 51, 3655–3659 (2012).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  10. J. Geng, Q. Wang, Z. Jiang, T. Luo, S. Jiang, and G. Czarnecki, “Kilowatt-peak-power, single-frequency, pulsed fiber laser near 2  μm,” Opt. Lett. 36, 2293–2295 (2011).
    [CrossRef]
  11. C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38, 1578–1579 (2002).
    [CrossRef]
  12. M. J. Munroe, M. Y. Hamamoto, and D. A. Dutton, “Reduction of SPM induced spectral broadening in a high peak power, narrow linewidth, IR fiber laser using phase modulation,” Proc. SPIE 7195, 71952N (2009).
    [CrossRef]
  13. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1  μm,” Opt. Lett. 32, 897–899 (2007).
    [CrossRef]

2012 (1)

2011 (3)

2010 (1)

2009 (3)

J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2  μm,” Opt. Lett. 34, 3713–3715 (2009).
[CrossRef]

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

M. J. Munroe, M. Y. Hamamoto, and D. A. Dutton, “Reduction of SPM induced spectral broadening in a high peak power, narrow linewidth, IR fiber laser using phase modulation,” Proc. SPIE 7195, 71952N (2009).
[CrossRef]

2008 (1)

W. Shi, M. Leigh, J. Zong, Z. Yao, and S. Jiang, “Photonic narrow linewidth GHz source based on highly codoped phosphate glass fiber lasers in a single MOPA chain,” IEEE Photon. Technol. Lett. 20, 69–71 (2008).
[CrossRef]

2007 (1)

2004 (1)

2002 (1)

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38, 1578–1579 (2002).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Alegria, C.

Amzajerdian, F.

Carlson, C. G.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Chavez-Pirson, A.

Chen, W.

Codemard, C.

Coleman, J. J.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Czarnecki, G.

Dragic, P. D.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Dutton, D. A.

M. J. Munroe, M. Y. Hamamoto, and D. A. Dutton, “Reduction of SPM induced spectral broadening in a high peak power, narrow linewidth, IR fiber laser using phase modulation,” Proc. SPIE 7195, 71952N (2009).
[CrossRef]

Geng, J.

Hamamoto, M. Y.

M. J. Munroe, M. Y. Hamamoto, and D. A. Dutton, “Reduction of SPM induced spectral broadening in a high peak power, narrow linewidth, IR fiber laser using phase modulation,” Proc. SPIE 7195, 71952N (2009).
[CrossRef]

Jeong, Y.

Jiang, S.

Jiang, Z.

Leigh, M.

W. Shi, M. Leigh, J. Zong, Z. Yao, and S. Jiang, “Photonic narrow linewidth GHz source based on highly codoped phosphate glass fiber lasers in a single MOPA chain,” IEEE Photon. Technol. Lett. 20, 69–71 (2008).
[CrossRef]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1  μm,” Opt. Lett. 32, 897–899 (2007).
[CrossRef]

Liu, J.

Liu, X.

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38, 1578–1579 (2002).
[CrossRef]

Liu, Y.

Luo, T.

Mollenauer, L.

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38, 1578–1579 (2002).
[CrossRef]

Munroe, M. J.

M. J. Munroe, M. Y. Hamamoto, and D. A. Dutton, “Reduction of SPM induced spectral broadening in a high peak power, narrow linewidth, IR fiber laser using phase modulation,” Proc. SPIE 7195, 71952N (2009).
[CrossRef]

Nguyen, D. T.

Nilsson, J.

Pearson, G. N.

Petersen, E. B.

Peyghambarian, N.

Philippov, V.

Price, R. K.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Sahu, J. K.

Shi, W.

Smith, J.

Su, R.

Swenson, G. R.

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

Wang, J.

Wang, Q.

Wang, X.

Xiao, H.

Xu, C.

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38, 1578–1579 (2002).
[CrossRef]

Xu, X.

Yao, Z.

Yu, J.

Zhou, P.

Zong, J.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

Electron. Lett. (1)

C. Xu, L. Mollenauer, and X. Liu, “Compensation of nonlinear self-phase modulation with phase modulators,” Electron. Lett. 38, 1578–1579 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. G. Carlson, P. D. Dragic, R. K. Price, J. J. Coleman, and G. R. Swenson, “A narrow-linewidth, Yb fiber-amplifier-based upper atmospheric Doppler temperature lidar,” IEEE J. Sel. Top. Quantum Electron. 15, 451–461 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Shi, M. Leigh, J. Zong, Z. Yao, and S. Jiang, “Photonic narrow linewidth GHz source based on highly codoped phosphate glass fiber lasers in a single MOPA chain,” IEEE Photon. Technol. Lett. 20, 69–71 (2008).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

M. J. Munroe, M. Y. Hamamoto, and D. A. Dutton, “Reduction of SPM induced spectral broadening in a high peak power, narrow linewidth, IR fiber laser using phase modulation,” Proc. SPIE 7195, 71952N (2009).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the single-frequency pulsed laser system.

Fig. 2.
Fig. 2.

Spectrum of the laser seed over an FP interferometer.

Fig. 3.
Fig. 3.

Calculated spectra of pulsed seed and amplified laser (a) with and (b) without SPM compensation.

Fig. 4.
Fig. 4.

Dependence of the output power as a function of pump power.

Fig. 5.
Fig. 5.

Typical pulse shape of the pulsed laser with (a) 10 periods and (b) 1 period.

Fig. 6.
Fig. 6.

(a) Spectrum and (b) beam profile of the pulsed laser output from the main amplifier.

Fig. 7.
Fig. 7.

Linewidth of amplified pulses with and without SPM compensation. (a) Ppeak=1.47kW; (b) Ppeak=1.90kW.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

U(L,t)=U(0,t)exp[iφNL(L,t)],
U(L,t)=U(0,t)exp{i[φNL(L,t)+φM(t)]}.
Ppeak=2ln2/πPave/tFWHMfRR,

Metrics