Abstract

Symmetric embedded waveguides were fabricated in heavy metal oxide SF10 glass using slit-shaped infrared femtosecond laser writing in the low-repetition frequency regime. The impact of the writing parameters on the waveguide formation in the transverse writing scheme was systemically studied. Results indicate that efficient waveguides can be inscribed in a wide parameter space ranging from 500 fs to 1.5 ps pulse duration, 0.7–4.2 μJ pulse energy, and 5μm/s to 640μm/s scan speed and pointing out the robustness of the photoinscription process. The refractive index profile reconstructed from the measured near field pattern goes up to 103. In addition, propagation losses of the waveguides are tolerable, with the lowest propagation loss estimated at 0.7dB/cm. With a 5μm/s scan speed and 3.5 μJ pulse energy in a high-dose regime, few-mode guiding was achieved in the waveguide at 800 nm signal injection wavelength. This is due to a combination of increased refractive index in the core of the trace and the appearance of a depressed cladding.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef]
  2. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  3. R. R. Thomson and G. Cerullo, “Ultrafast laser inscription of photonic devices in bulk dielectrics,” in Ultrafast Nonlinear Optics (Springer, 2013), Chap. 13, pp. 323–350.
  4. H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14, 4826–4834 (2006).
    [CrossRef]
  5. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express 1, 711–723 (2011).
    [CrossRef]
  6. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18, 24809–24824 (2010).
    [CrossRef]
  7. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19, 7929–7936 (2011).
    [CrossRef]
  8. R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
    [CrossRef]
  9. Y. Tan, Y. C. Jia, F. Chen, J. R. Vázquez de Aldana, and D. Jaque, “Simultaneous dual-wavelength lasers at 1064 and 1342 nm in femtosecond-laser-written Nd:YVO4 channel waveguides,” J. Opt. Soc. Am. B 28, 1607–1610 (2011).
    [CrossRef]
  10. A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
    [CrossRef]
  11. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
    [CrossRef]
  12. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
    [CrossRef]
  13. L. Kallepalli, V. Soma, and N. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
    [CrossRef]
  14. J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
    [CrossRef]
  15. V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
    [CrossRef]
  16. R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).
    [CrossRef]
  17. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
    [CrossRef]
  18. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
    [CrossRef]
  19. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
    [CrossRef]
  20. A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
    [CrossRef]
  21. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987–2989 (2006).
    [CrossRef]
  22. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
    [CrossRef]
  23. F. Caccavale, F. Segato, I. Mansour, and M. Gianesin, “A finite differences method for the reconstruction of refractive index profiles from near-field measurements,” J. Lightwave Technol. 16, 1348–1353 (1998).
    [CrossRef]
  24. L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
    [CrossRef]
  25. M. Spajer and B. Charquille, “Application of intermodal interference to fiber sensors,” Opt. Commun. 60, 261–264 (1986).
    [CrossRef]

2012 (1)

L. Kallepalli, V. Soma, and N. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[CrossRef]

2011 (6)

2010 (3)

2009 (1)

2008 (2)

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

2006 (4)

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14, 4826–4834 (2006).
[CrossRef]

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987–2989 (2006).
[CrossRef]

2005 (3)

L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[CrossRef]

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[CrossRef]

2003 (1)

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[CrossRef]

1998 (1)

1996 (1)

1986 (1)

M. Spajer and B. Charquille, “Application of intermodal interference to fiber sensors,” Opt. Commun. 60, 261–264 (1986).
[CrossRef]

Ams, M.

Arai, A.

Armengol, J.

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Audouard, E.

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[CrossRef]

Beecher, S. J.

Beresna, M.

Blewett, I. J.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Bonse, J.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[CrossRef]

Bookey, H. T.

Boukenter, A.

Brow, R. K.

Burakov, I. M.

Caccavale, F.

Calmano, T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Campbell, S.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Cerullo, G.

R. R. Thomson and G. Cerullo, “Ultrafast laser inscription of photonic devices in bulk dielectrics,” in Ultrafast Nonlinear Optics (Springer, 2013), Chap. 13, pp. 323–350.

Chahid-Erraji, A.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[CrossRef]

Charquille, B.

M. Spajer and B. Charquille, “Application of intermodal interference to fiber sensors,” Opt. Commun. 60, 261–264 (1986).
[CrossRef]

Chen, F.

Cheng, G.

Davis, K. M.

Desai, N.

L. Kallepalli, V. Soma, and N. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[CrossRef]

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Eaton, S.

Eaton, S. M.

Ebendorff-Heidepriem, H.

Fernandez-Navarro, J. M.

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Fletcher, L. B.

Fredrich-Thornton, S. T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Fuerbach, A.

Garcia-Navarro, A.

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Gianesin, M.

Gross, S.

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[CrossRef]

Herman, P.

Herman, P. R.

Hertel, I. V.

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[CrossRef]

Hirao, K.

Huber, G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Huo, G.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[CrossRef]

Jaque, D.

Jia, Y. C.

Kallepalli, L.

L. Kallepalli, V. Soma, and N. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[CrossRef]

Kar, A. K.

Kazansky, P.

Krol, D. M.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19, 7929–7936 (2011).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[CrossRef]

Kuan, K.

Lancaster, D. G.

Lancry, M.

Macdonald, J. R.

Mansour, I.

Marshall, G.

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Mermillod-Blondin, A.

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18, 24809–24824 (2010).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[CrossRef]

Mishchik, K.

Miura, K.

Monro, T. M.

Nejadmalayeri, A. H.

Ouerdane, Y.

Parriaux, O.

Paschke, A. G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Petermann, K.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Poumellec, B.

Psaila, N. D.

Reid, D. T.

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

Reis, S. T.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[CrossRef]

Rodenas, A.

Rosenfeld, A.

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18, 24809–24824 (2010).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[CrossRef]

Sanz, O.

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Segato, F.

Shah, L.

Siebenmorgen, J.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Siegel, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Solis, J.

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Soma, V.

L. Kallepalli, V. Soma, and N. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[CrossRef]

Spajer, M.

M. Spajer and B. Charquille, “Application of intermodal interference to fiber sensors,” Opt. Commun. 60, 261–264 (1986).
[CrossRef]

Spence, D.

Stoian, R.

Sugimoto, N.

Tan, Y.

Thomson, R. R.

R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).
[CrossRef]

J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett. 35, 4036–4038 (2010).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

R. R. Thomson and G. Cerullo, “Ultrafast laser inscription of photonic devices in bulk dielectrics,” in Ultrafast Nonlinear Optics (Springer, 2013), Chap. 13, pp. 323–350.

Troy, N.

Vázquez de Aldana, J. R.

Vega, F.

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Witcher, J. J.

Withford, M.

Withford, M. J.

Yagi, H.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Zhang, H.

Appl. Phys. B (1)

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

J. Siegel, J. M. Fernandez-Navarro, A. Garcıa-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

R. R. Thomson, S. Campbell, I. J. Blewett, A. K. Kar, and D. T. Reid, “Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime,” Appl. Phys. Lett. 88, 111109 (2006).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371–2373 (2003).
[CrossRef]

A. Mermillod-Blondin, C. Mauclair, A. Rosenfeld, J. Bonse, I. V. Hertel, E. Audouard, and R. Stoian, “Size correction in ultrafast laser processing of fused silica by temporal pulse shaping,” Appl. Phys. Lett. 93, 021921 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

V. Diez-Blanco, J. Siegel, and J. Solis, “Waveguide structures written in SF57 glass with fs-laser pulses above the critical self-focusing threshold,” Appl. Surf. Sci. 252, 4523–4526 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

M. Spajer and B. Charquille, “Application of intermodal interference to fiber sensors,” Opt. Commun. 60, 261–264 (1986).
[CrossRef]

Opt. Eng. (1)

L. Kallepalli, V. Soma, and N. Desai, “Femtosecond-laser direct writing in polymers and potential applications in microfluidics and memory devices,” Opt. Eng. 51, 073402 (2012).
[CrossRef]

Opt. Express (8)

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18, 24809–24824 (2010).
[CrossRef]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express 19, 7929–7936 (2011).
[CrossRef]

R. R. Thomson, N. D. Psaila, S. J. Beecher, and A. K. Kar, “Ultrafast laser inscription of a high-gain Er-doped bismuthate glass waveguide amplifier,” Opt. Express 18, 13212–13219 (2010).
[CrossRef]

M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[CrossRef]

G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, and R. Stoian, “Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass,” Opt. Express 17, 9515–9525 (2009).
[CrossRef]

H. Zhang, S. M. Eaton, and P. R. Herman, “Low-loss type II waveguide writing in fused silica with single picosecond laser pulses,” Opt. Express 14, 4826–4834 (2006).
[CrossRef]

A. Rodenas and A. K. Kar, “High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing,” Opt. Express 19, 17820–17833 (2011).
[CrossRef]

L. Shah, A. Arai, S. Eaton, and P. Herman, “Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate,” Opt. Express 13, 1999–2006 (2005).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. Express (1)

Other (1)

R. R. Thomson and G. Cerullo, “Ultrafast laser inscription of photonic devices in bulk dielectrics,” in Ultrafast Nonlinear Optics (Springer, 2013), Chap. 13, pp. 323–350.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of the femtosecond laser waveguide writing arrangement indicating the irradiation geometry and glass sample orientation: MO, microscope objective; HWP, half-wave plate; CCD, charge-coupled camera; and PCM, phase contrast microscopy.

Fig. 2.
Fig. 2.

Waveguide laser fabrication results in SF10. Top row: side view PCM images of the laser generated traces. Bottom row: near-field mode images for injected 980 nm light of the waveguide written along the y axis for different writing pulse widths. Note the change in track morphology with the pulse duration.

Fig. 3.
Fig. 3.

Reconstructed refractive index distribution of the waveguide fabricated with 800 fs duration presented in Fig. 2. The red central peak represents the maximum refractive index change of up to 7.5×104.

Fig. 4.
Fig. 4.

Refractive index change as a function of the pulse duration for 2.1 μJ pulse energy and 80μm/s scan speed.

Fig. 5.
Fig. 5.

Plot of insertion loss versus different waveguide lengths. The linear fit equation gives the propagation loss in decibel/centimeter (slope) and the coupling loss in decibel (y intercept).

Fig. 6.
Fig. 6.

Propagation loss as a function of the pulse duration for 2.1 μJ pulse energy and 80μm/s scan speed.

Fig. 7.
Fig. 7.

LP11 mode image of the waveguide for injected 800 nm radiation with a 10× objective, NA=0.28.

Tables (2)

Tables Icon

Table 1. Waveguide MFD, Refractive Index Change, and Loss at a 80μm/s Scanning Velocity and a 800 fs Pulse Duration

Tables Icon

Table 2. Waveguide MFD, Refractive Index Change, and Loss at a 2.1 μJ Pulse Energy and a 800 fs Pulse Duration

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn(x,y)=ns21k2E(x,y)t2E(x,y)ns,

Metrics