Abstract

A model of angular-dependent emissivity spectra of snow and ice in the 8–14 μm atmospheric window is constructed. Past field research revealed that snow emissivity varies depending on snow grain size and the exitance angle. Thermography images acquired in this study further revealed that not only welded snow particles such as sun crust, but also disaggregated particles such as granular snow and dendrite crystals exhibit high reflectivity on their crystal facets, even when the bulk snow surface exhibits blackbody-like behavior as a whole. The observed thermal emissive behaviors of snow particles suggest that emissivity of the bulk snow surface can be expressed by a weighted sum of two emissivity components: those of the specular and blackbody surfaces. Based on this assumption, a semi-empirical emissivity model was constructed; it is expressed by a linear combination of specular and blackbody surfaces’ emissivities with a weighting parameter characterizing the specularity of the bulk surface. Emissivity spectra calculated using the model succeeded in reproducing the past in situ measured directional spectra of various snow types by employing a specific weighting parameter for each snow type.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Key and M. Haefliger, “Arctic ice surface temperature retrieval from AVHRR thermal channels,” J. Geophys. Res. 97, 5885–5893 (1992).
    [CrossRef]
  2. Z. Wan, “MODIS land-surface temperature algorithm theoretical basis document (LST ATBD),” Version 3.3. Contract Number  (1999), available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf .
  3. S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67–89 (1982).
    [CrossRef]
  4. D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
    [CrossRef]
  5. Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
    [CrossRef]
  6. T. Yamanouchi, K. Suzuki, and S. Kawaguchi, “Detection of clouds in Antarctica from infrared multispectral data of AVHRR,” J. Meteorol. Soc. Jpn. 65, 949–962 (1987).
  7. Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
    [CrossRef]
  8. A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrievals of long-wave radiation,” NASA Tech. Rep., 35 (1999).
  9. R. Morishima, S. G. Edgington, and L. Spilker, “Regolith grain sizes of Saturn’s rings inferred from Cassini–CIRS far-infrared spectra,” Icarus 221, 888–899 (2012).
    [CrossRef]
  10. R. H. Berger, “Snowpack optical properties in the infrared,” (U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1979), pp. 11.
  11. J. Dozier and S. Warren, “Effect of viewing angle on the infrared brightness temperature of snow,” Water Resour. Res. 18, 1424–1434 (1982).
    [CrossRef]
  12. J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997).
    [CrossRef]
  13. W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
    [CrossRef]
  14. W. G. Rees and S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
    [CrossRef]
  15. W. G. Rees, “Infrared emissivities of Arctic land cover types,” Int. J. Remote Sens. 14, 1013–1017 (1993).
    [CrossRef]
  16. W. G. Rees, “Infrared emissivity of Arctic winter snow,” Int. J. Remote Sens. 14, 3069–3073 (1993).
    [CrossRef]
  17. J. W. Salisbury, D. M. D’Aria, and A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. 99, 24235–24240 (1994).
    [CrossRef]
  18. ASTER Spectral Library: reproduced from the ASTER Spectral Library through the courtesy of the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (1999), http://speclib.jpl.nasa.gov.
  19. A. Wald, “Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow,” J. Geophys. Res. 99, 24241–24250 (1994).
    [CrossRef]
  20. M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
    [CrossRef]
  21. H. Tonooka and A. Watanabe, “Applicability of thermal infrared surface emissivity ratio for snow/ice monitoring,” Proc. SPIE 5655, 282–290 (2005).
    [CrossRef]
  22. J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
    [CrossRef]
  23. C. Shea and B. Jamieson, “Some fundamentals of handheld snow surface thermography,” The Cryosphere 5, 55–66 (2011).
    [CrossRef]
  24. J. Light, S. Parthasarathy, and W. Mclver, “Monitoring winter ice conditions using thermal imaging cameras equipped with infrared microbolometer sensors,” Procedia Comput. Sci. 10, 1158–1165 (2012).
    [CrossRef]
  25. JAXA in situ data archive for GCOM mission: reproduced from the archived in-situ data provided by Japan Aerospace Exploration Agency. http://suzaku.eorc.jaxa.jp/GCOM_C/insitu/index.html (2012).
  26. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).
  27. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
    [CrossRef]
  28. T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
    [CrossRef]
  29. C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).
  30. Japanese Society of Snow and Ice, “JSSI classification for snow cover,” J. Jpn. Soc. Snow Ice 60, 419–436 (1998).
  31. A. R. Korb, P. Dybwad, W. Wadsworth, and J. W. Salisbury, “Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Appl. Opt. 35, 1679–1692 (1996).
    [CrossRef]

2013 (1)

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

2012 (2)

R. Morishima, S. G. Edgington, and L. Spilker, “Regolith grain sizes of Saturn’s rings inferred from Cassini–CIRS far-infrared spectra,” Icarus 221, 888–899 (2012).
[CrossRef]

J. Light, S. Parthasarathy, and W. Mclver, “Monitoring winter ice conditions using thermal imaging cameras equipped with infrared microbolometer sensors,” Procedia Comput. Sci. 10, 1158–1165 (2012).
[CrossRef]

2011 (1)

C. Shea and B. Jamieson, “Some fundamentals of handheld snow surface thermography,” The Cryosphere 5, 55–66 (2011).
[CrossRef]

2010 (1)

J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
[CrossRef]

2008 (1)

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

2006 (1)

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

2005 (1)

H. Tonooka and A. Watanabe, “Applicability of thermal infrared surface emissivity ratio for snow/ice monitoring,” Proc. SPIE 5655, 282–290 (2005).
[CrossRef]

2004 (1)

Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
[CrossRef]

2000 (1)

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

1998 (2)

Japanese Society of Snow and Ice, “JSSI classification for snow cover,” J. Jpn. Soc. Snow Ice 60, 419–436 (1998).

W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[CrossRef]

1997 (1)

J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997).
[CrossRef]

1996 (1)

1994 (2)

J. W. Salisbury, D. M. D’Aria, and A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. 99, 24235–24240 (1994).
[CrossRef]

A. Wald, “Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow,” J. Geophys. Res. 99, 24241–24250 (1994).
[CrossRef]

1993 (2)

W. G. Rees, “Infrared emissivities of Arctic land cover types,” Int. J. Remote Sens. 14, 1013–1017 (1993).
[CrossRef]

W. G. Rees, “Infrared emissivity of Arctic winter snow,” Int. J. Remote Sens. 14, 3069–3073 (1993).
[CrossRef]

1992 (2)

W. G. Rees and S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

J. Key and M. Haefliger, “Arctic ice surface temperature retrieval from AVHRR thermal channels,” J. Geophys. Res. 97, 5885–5893 (1992).
[CrossRef]

1987 (1)

T. Yamanouchi, K. Suzuki, and S. Kawaguchi, “Detection of clouds in Antarctica from infrared multispectral data of AVHRR,” J. Meteorol. Soc. Jpn. 65, 949–962 (1987).

1984 (1)

1982 (2)

S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67–89 (1982).
[CrossRef]

J. Dozier and S. Warren, “Effect of viewing angle on the infrared brightness temperature of snow,” Water Resour. Res. 18, 1424–1434 (1982).
[CrossRef]

Ackerman, S. A.

Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
[CrossRef]

Aoki, T.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

Aoki, Te.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Armstrong, R. L.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Berger, R. H.

R. H. Berger, “Snowpack optical properties in the infrared,” (U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1979), pp. 11.

Box, J. E.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

Casey, K. A.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

Cheng, J.

J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
[CrossRef]

Collins, J. B.

J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997).
[CrossRef]

D’Aria, D. M.

J. W. Salisbury, D. M. D’Aria, and A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. 99, 24235–24240 (1994).
[CrossRef]

Dozier, J.

J. Dozier and S. Warren, “Effect of viewing angle on the infrared brightness temperature of snow,” Water Resour. Res. 18, 1424–1434 (1982).
[CrossRef]

Durand, Y.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Dybwad, P.

Edgington, S. G.

R. Morishima, S. G. Edgington, and L. Spilker, “Regolith grain sizes of Saturn’s rings inferred from Cassini–CIRS far-infrared spectra,” Icarus 221, 888–899 (2012).
[CrossRef]

Eide, H.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Etchevers, P.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Feng, Y.-Z.

W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[CrossRef]

Fierz, C.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Fowler, C.

J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997).
[CrossRef]

Frey, R. A.

Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
[CrossRef]

Fukabori, M.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

Greene, E.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Gupta, S. K.

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrievals of long-wave radiation,” NASA Tech. Rep., 35 (1999).

Hachikubo, A.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

Haefliger, M.

J. Key and M. Haefliger, “Arctic ice surface temperature retrieval from AVHRR thermal channels,” J. Geophys. Res. 97, 5885–5893 (1992).
[CrossRef]

Hall, D. K.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

Hapke, B.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).

Hook, S. J.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

Hori, M.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

James, S. P.

W. G. Rees and S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

Jamieson, B.

C. Shea and B. Jamieson, “Some fundamentals of handheld snow surface thermography,” The Cryosphere 5, 55–66 (2011).
[CrossRef]

Kawaguchi, S.

T. Yamanouchi, K. Suzuki, and S. Kawaguchi, “Detection of clouds in Antarctica from infrared multispectral data of AVHRR,” J. Meteorol. Soc. Jpn. 65, 949–962 (1987).

Key, J.

J. Key and M. Haefliger, “Arctic ice surface temperature retrieval from AVHRR thermal channels,” J. Geophys. Res. 97, 5885–5893 (1992).
[CrossRef]

Key, J. R.

Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
[CrossRef]

J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997).
[CrossRef]

Korb, A. R.

Kratz, D. P.

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrievals of long-wave radiation,” NASA Tech. Rep., 35 (1999).

Li, X.

J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
[CrossRef]

Li, Z.-L.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

Liang, S.

J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
[CrossRef]

Light, J.

J. Light, S. Parthasarathy, and W. Mclver, “Monitoring winter ice conditions using thermal imaging cameras equipped with infrared microbolometer sensors,” Procedia Comput. Sci. 10, 1158–1165 (2012).
[CrossRef]

Liu, Y.

Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
[CrossRef]

McClung, D. M.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Mclver, W.

J. Light, S. Parthasarathy, and W. Mclver, “Monitoring winter ice conditions using thermal imaging cameras equipped with infrared microbolometer sensors,” Procedia Comput. Sci. 10, 1158–1165 (2012).
[CrossRef]

Menzel, W. P.

Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
[CrossRef]

Morishima, R.

R. Morishima, S. G. Edgington, and L. Spilker, “Regolith grain sizes of Saturn’s rings inferred from Cassini–CIRS far-infrared spectra,” Icarus 221, 888–899 (2012).
[CrossRef]

Motoyoshi, H.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Nakajima, Y.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Nishimura, K.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Nishio, F.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

Parthasarathy, S.

J. Light, S. Parthasarathy, and W. Mclver, “Monitoring winter ice conditions using thermal imaging cameras equipped with infrared microbolometer sensors,” Procedia Comput. Sci. 10, 1158–1165 (2012).
[CrossRef]

Qiu, S.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

Rees, W. G.

W. G. Rees, “Infrared emissivities of Arctic land cover types,” Int. J. Remote Sens. 14, 1013–1017 (1993).
[CrossRef]

W. G. Rees, “Infrared emissivity of Arctic winter snow,” Int. J. Remote Sens. 14, 3069–3073 (1993).
[CrossRef]

W. G. Rees and S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

Salisbury, J. W.

A. R. Korb, P. Dybwad, W. Wadsworth, and J. W. Salisbury, “Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Appl. Opt. 35, 1679–1692 (1996).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, and A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. 99, 24235–24240 (1994).
[CrossRef]

Satyawali, P. K.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Shea, C.

C. Shea and B. Jamieson, “Some fundamentals of handheld snow surface thermography,” The Cryosphere 5, 55–66 (2011).
[CrossRef]

Shuman, C. A.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

Snyder, W.-C.

W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[CrossRef]

Sobrino, S. A.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

Sokratov, S. A.

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Spilker, L.

R. Morishima, S. G. Edgington, and L. Spilker, “Regolith grain sizes of Saturn’s rings inferred from Cassini–CIRS far-infrared spectra,” Icarus 221, 888–899 (2012).
[CrossRef]

Steffen, K.

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

Stone, R. S.

J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997).
[CrossRef]

Storvold, R.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Sugiura, K.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Suzuki, K.

T. Yamanouchi, K. Suzuki, and S. Kawaguchi, “Detection of clouds in Antarctica from infrared multispectral data of AVHRR,” J. Meteorol. Soc. Jpn. 65, 949–962 (1987).

Tachibana, Y.

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

Takahashi, F.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Tang, B.-H.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

Tanikawa, T.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Tonooka, H.

H. Tonooka and A. Watanabe, “Applicability of thermal infrared surface emissivity ratio for snow/ice monitoring,” Proc. SPIE 5655, 282–290 (2005).
[CrossRef]

Wadsworth, W.

Wald, A.

A. Wald, “Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow,” J. Geophys. Res. 99, 24241–24250 (1994).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, and A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. 99, 24235–24240 (1994).
[CrossRef]

Wan, Z.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[CrossRef]

Z. Wan, “MODIS land-surface temperature algorithm theoretical basis document (LST ATBD),” Version 3.3. Contract Number  (1999), available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf .

Wang, J.

J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
[CrossRef]

Wang, N.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

Warren, S.

J. Dozier and S. Warren, “Effect of viewing angle on the infrared brightness temperature of snow,” Water Resour. Res. 18, 1424–1434 (1982).
[CrossRef]

Warren, S. G.

S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984).
[CrossRef]

S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67–89 (1982).
[CrossRef]

Watanabe, A.

H. Tonooka and A. Watanabe, “Applicability of thermal infrared surface emissivity ratio for snow/ice monitoring,” Proc. SPIE 5655, 282–290 (2005).
[CrossRef]

Weng, F.

J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
[CrossRef]

Wilber, A. C.

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrievals of long-wave radiation,” NASA Tech. Rep., 35 (1999).

Wu, H.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

Yamanouchi, T.

T. Yamanouchi, K. Suzuki, and S. Kawaguchi, “Detection of clouds in Antarctica from infrared multispectral data of AVHRR,” J. Meteorol. Soc. Jpn. 65, 949–962 (1987).

Yan, G.

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

Yasunari, T.

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Zhang, Y.

W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[CrossRef]

Appl. Opt. (2)

Icarus (1)

R. Morishima, S. G. Edgington, and L. Spilker, “Regolith grain sizes of Saturn’s rings inferred from Cassini–CIRS far-infrared spectra,” Icarus 221, 888–899 (2012).
[CrossRef]

IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. (1)

J. Cheng, S. Liang, F. Weng, J. Wang, and X. Li, “Comparison of radiative transfer models for simulating snow surface thermal infrared emissivity,” IEEE J. Sel. Topics Appl. Earth Observations Remote Sens. 3, 323–336 (2010).
[CrossRef]

Int. J. Remote Sens. (5)

W.-C. Snyder, Z. Wan, Y. Zhang, and Y.-Z. Feng, “Classification-based emissivity for land surface temperature measurement from space,” Int. J. Remote Sens. 19, 2753–2774 (1998).
[CrossRef]

W. G. Rees and S. P. James, “Angular variation of the infrared emissivity of ice and water surfaces,” Int. J. Remote Sens. 13, 2873–2886 (1992).
[CrossRef]

W. G. Rees, “Infrared emissivities of Arctic land cover types,” Int. J. Remote Sens. 14, 1013–1017 (1993).
[CrossRef]

W. G. Rees, “Infrared emissivity of Arctic winter snow,” Int. J. Remote Sens. 14, 3069–3073 (1993).
[CrossRef]

Z.-L. Li, H. Wu, N. Wang, S. Qiu, S. A. Sobrino, Z. Wan, B.-H. Tang, and G. Yan, “Land surface emissivity retrieval from satellite data,” Int. J. Remote Sens. 34, 3084–3127 (2013).
[CrossRef]

J. Geophys. Res. (4)

J. Key and M. Haefliger, “Arctic ice surface temperature retrieval from AVHRR thermal channels,” J. Geophys. Res. 97, 5885–5893 (1992).
[CrossRef]

J. W. Salisbury, D. M. D’Aria, and A. Wald, “Measurements of thermal infrared spectral reflectance of frost, snow, and ice,” J. Geophys. Res. 99, 24235–24240 (1994).
[CrossRef]

A. Wald, “Modeling thermal infrared (2–14 μm) reflectance spectra of frost and snow,” J. Geophys. Res. 99, 24241–24250 (1994).
[CrossRef]

T. Aoki, T. Aoki, M. Fukabori, A. Hachikubo, Y. Tachibana, and F. Nishio, “Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface,” J. Geophys. Res. 105, 10219–10236 (2000).
[CrossRef]

J. Jpn. Soc. Snow Ice (1)

Japanese Society of Snow and Ice, “JSSI classification for snow cover,” J. Jpn. Soc. Snow Ice 60, 419–436 (1998).

J. Meteorol. Soc. Jpn. (1)

T. Yamanouchi, K. Suzuki, and S. Kawaguchi, “Detection of clouds in Antarctica from infrared multispectral data of AVHRR,” J. Meteorol. Soc. Jpn. 65, 949–962 (1987).

Proc. SPIE (1)

H. Tonooka and A. Watanabe, “Applicability of thermal infrared surface emissivity ratio for snow/ice monitoring,” Proc. SPIE 5655, 282–290 (2005).
[CrossRef]

Procedia Comput. Sci. (1)

J. Light, S. Parthasarathy, and W. Mclver, “Monitoring winter ice conditions using thermal imaging cameras equipped with infrared microbolometer sensors,” Procedia Comput. Sci. 10, 1158–1165 (2012).
[CrossRef]

Remote Sens. Environ. (4)

M. Hori, Te. Aoki, T. Tanikawa, H. Motoyoshi, A. Hachikubo, K. Sugiura, T. Yasunari, H. Eide, R. Storvold, Y. Nakajima, and F. Takahashi, “In situ measured spectral directional emissivity of snow and ice in the 8–14 μm atmospheric window,” Remote Sens. Environ. 100, 486–502 (2006).
[CrossRef]

Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P. Menzel, “Nighttime polar cloud detection with MODIS,” Remote Sens. Environ. 92, 181–194 (2004).
[CrossRef]

D. K. Hall, J. E. Box, K. A. Casey, S. J. Hook, C. A. Shuman, and K. Steffen, “Comparison of satellite-derived and in situ observations of ice and snow surface temperatures over Greenland,” Remote Sens. Environ. 112, 3739–3749 (2008).
[CrossRef]

J. R. Key, J. B. Collins, C. Fowler, and R. S. Stone, “High-latitude surface temperature estimates from thermal satellite data,” Remote Sens. Environ. 61, 302–309 (1997).
[CrossRef]

Rev. Geophys. Space Phys. (1)

S. G. Warren, “Optical properties of snow,” Rev. Geophys. Space Phys. 20, 67–89 (1982).
[CrossRef]

The Cryosphere (1)

C. Shea and B. Jamieson, “Some fundamentals of handheld snow surface thermography,” The Cryosphere 5, 55–66 (2011).
[CrossRef]

Water Resour. Res. (1)

J. Dozier and S. Warren, “Effect of viewing angle on the infrared brightness temperature of snow,” Water Resour. Res. 18, 1424–1434 (1982).
[CrossRef]

Other (7)

R. H. Berger, “Snowpack optical properties in the infrared,” (U. S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1979), pp. 11.

ASTER Spectral Library: reproduced from the ASTER Spectral Library through the courtesy of the Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (1999), http://speclib.jpl.nasa.gov.

Z. Wan, “MODIS land-surface temperature algorithm theoretical basis document (LST ATBD),” Version 3.3. Contract Number  (1999), available at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod11.pdf .

A. C. Wilber, D. P. Kratz, and S. K. Gupta, “Surface emissivity maps for use in satellite retrievals of long-wave radiation,” NASA Tech. Rep., 35 (1999).

JAXA in situ data archive for GCOM mission: reproduced from the archived in-situ data provided by Japan Aerospace Exploration Agency. http://suzaku.eorc.jaxa.jp/GCOM_C/insitu/index.html (2012).

B. Hapke, Theory of Reflectance and Emittance Spectroscopy (Cambridge University, 1993).

C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung, K. Nishimura, P. K. Satyawali, and S. A. Sokratov, “The international classification for seasonal snow on the ground,” IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

In situ measured spectral directional emissivity of five different snow types (fine dendrite, medium-granular snow, coarse-grained snow, sun crust, and smooth bare ice) at six exitance angles (θ): (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 60°, and (f) 75° measured from the surface normal toward the sensor [20] reproduced from the JAXA in situ data archive for GCOM mission [25].

Fig. 2.
Fig. 2.

Visible image photographs of snow covers taken at a snowfield in Hokkaido, Japan, on (a) Feb. 24 (surface snow type: partly rounded particles and faceted particles; air temperature: 5 to 0°C), (b) daytime on Feb. 25 (granular snow and patches of sun crust, 3°C–5°C), (c) nighttime on Feb. 25 (granular snow and fragments of sun crust, 8 to 4°C), and (d) Feb. 26, 2011 (granular snow, 8 to 4°C).

Fig. 3.
Fig. 3.

Thermography images of snow covers taken at the same location and times as in Fig. 2.

Fig. 4.
Fig. 4.

Close-up thermography images of sun crust snow taken at the snowfield in Hokkaido, Japan, on Feb. 25 (daytime), 2011: (a) without and (b) with a bare hand laid over the snow surface. In (b) the specular reflection of TIR emission from the warm bare hand can be seen to occur at the sun crust surface.

Fig. 5.
Fig. 5.

Close-up thermography images of granular snow particles taken at the snowfield in Hokkaido, Japan, on Feb. 25, 2011: (a) without and (b) with a bare hand laid over the snow surface. In (b) the specular reflection of TIR emission from the warm bare hand can be seen to occur at the upper surface of granular crystal facets, shown as bright spots indicated with white arrows.

Fig. 6.
Fig. 6.

Close-up thermography images of fine dendrite snow taken at a snowfield in Hokkaido, Japan, on Feb. 7, 2013: (a) without and (b) with a bare hand laid over the snow surface. (c) A microphotograph of dendrite crystals taken at the snow surface. In (b) the specular reflection of TIR emission from the warm bare hand can be seen to occur at several dendrite crystal facets, shown as bright spots indicated with white arrows.

Fig. 7.
Fig. 7.

Conceptual illustration of a two component surface model for reproducing the in situ measured emissivity of snow and ice. The two components consist of a surface behaving like blackbody (BB) and a specular surface (SP), both of which are related via an effective areal fraction of the specular component (fsp) within a unit of surface area. As the fsp changes, the emissivity of the latter SP component itself is assumed to vary, from the emissivity of a horizontal icy mirror predicted by the Fresnel reflectance theory (when fsp=1.0), to that of a mixture of randomly oriented ice particles with specular facets and the horizontal mirror (when fsp is smaller than 1.0). The emissivity of BB is always constant (i.e., 1.0).

Fig. 8.
Fig. 8.

Conceptual illustration of the emissive behaviors of snow in the TIR wavelength region. Snow types are shown both for the Japanese classification [30] and international classification of snow type [29]. Also shown are the values of an effective areal fraction of specular surface (fsp) determined for individual snow types by comparing the modeled emissivity spectra with the in situ measured spectra in Fig. 10.

Fig. 9.
Fig. 9.

Simulated spectral directional emissivity using the semi-empirical model with the weighting parameters of (a) fsp=0.2, (b) fsp=0.4, (c) fsp=0.6, (d) fsp=0.8, and (e) fsp=1.0, as a function of exitance angles (ANG) between 0° and 80°.

Fig. 10.
Fig. 10.

Comparison between the simulated spectral directional emissivity (circle symbols) with in situ measured ones (solid lines) for (a) fine dendrite snow, (b) medium granular snow, (c) coarse grained snow, (d) sun crust, and (e) smooth bare ice, shown for six exitance angles (ANG) of 0, 15, 30, 45, 60, and 75°. The weighting parameters fsp were determined so that RMSE of the simulated spectra for all exitance angles is at a minimum. Also shown as a thin solid line around the bottom of each figure is the uncertainty of the in situ measured emissivity due to the instrument self-emission [20].

Fig. 11.
Fig. 11.

Possible temperature biases in thermography image estimated for nine exitance angles (ANG) and the five weighting parameters (fsp) indicated in the figures, all simulated for the FLIR SC640 spectral response. The selected weighting parameters correspond to the five typical snow types investigated by Hori et al. [20]: (a) fsp=0.22 for fine dendrite snow, (b) fsp=0.30 for medium granular snow, (c) fsp=0.43 for coarse-grained snow, (d) fsp=0.53 for sun crust, and (e) fsp=0.96 for smooth bare ice. Note that the vertical axis scale for (e) is different from the others.

Tables (1)

Tables Icon

Table 1. Determined fsp and RMSE of the Simulated Emissivity Spectra using the Semi-Empirical Model

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

εsnow(λ,θ)=εbb(λ)(1fsp)+εsp_app(λ,θ)fsp,
εsp_app(λ,θ)=εsp(λ,45°)(1fsp)+εsp(λ,θ)fsp,

Metrics