Abstract

In this paper, a novel method to improve the sensitivity of RIOGs is demonstrated by double-electrode phase modulation (DPM) technology. The scale factor of RIOGs with single-electrode phase modulation (SPM) and DPM are theoretically analyzed and calculated. The relationship between the slope rate in the linear region adjacent to the zero-offset point and the amplitudes of the triangle waveform with SPM and DPM are obtained; the RIOG’s highest sensitivity appears when the triangle waveforms have amplitudes of 45.9 and 22.95 V, respectively. Compared with the SPM, the DPM shows great advantage in improving the RIOG scale factor, as well as its bias stability. Moreover, in measurements using the RIOG experimental setup, the scale factor is significantly increased from 1.49 to 2.76, which is coincident with the simulation result. The test results for long-term bias stability demonstrate that the DPM has the advantage of improving the signal-to-noise ratio (SNR); significantly, the RIOG long-term bias stability is greatly improved from 0.61 to 0.49 deg/s, which is the best long-term stability result reported to date, to the best of our knowledge, for a waveguide-type integrated optical resonator (IOR).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ezekiel and S. R. Balsamo, “Passive ring resonator gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
    [CrossRef]
  2. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer, 2010).
  3. Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [CrossRef]
  4. G. Schmidt, “INS/GPS Technology Trends,” NATO RTO Lecture Series. (2008).
  5. F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986).
    [CrossRef]
  6. K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
    [CrossRef]
  7. L. K. Strandiord and G. A. Sanders, “Resonator optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
    [CrossRef]
  8. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
    [CrossRef]
  9. L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE 2292, 272–282 (1994).
    [CrossRef]
  10. Z. Jin, Z. Yang, and H. Ma, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
    [CrossRef]
  11. H. Ma, Y. Chen, M. Li, and Z. Jin, “Transient response of a resonator fiber optic gyro with triangular wave phase modulation,” Appl. Opt. 49, 6253–6263 (2010).
    [CrossRef]
  12. D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
    [CrossRef]
  13. D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun. 281, 580–586 (2008).
    [CrossRef]
  14. M. Lei, L. Feng, and Y. Zhi, “Effect of intensity variation of laser in resonator integrated optic gyro,” Appl. Opt. 52, 4576–4581 (2013).
    [CrossRef]
  15. H. Hsiao and K. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15, 17783–17797 (2007).
    [CrossRef]
  16. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
    [CrossRef]
  17. Y. Yan, C. Zhou, S. Yan, F. Sun, Z. Ji, J. Liu, Y. Zhang, L. Wang, C. Xue, W. Zhang, Z. Han, and J. Xiong, “Packaged silica microsphere-taper coupling system for robust thermal sensing application,” Opt. Express 19, 5753–5759 (2011).
    [CrossRef]
  18. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
    [CrossRef]
  19. H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
    [CrossRef]
  20. X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
    [CrossRef]
  21. Agilent Inc datasheet, “Signal generator selection guide,” (2013), http://cp.literature.agilent.com/litweb/pdf/5990-9956EN.pdf .
  22. Tektronix Inc datasheet, “Signal generator selection guide,” (2010), http://www.tek.com/singal-generator .
  23. Rohde & Schwarz Inc datasheet, “Signal generator selection guide,” (2013), http://www.rohde-schwarz.com.tw/PrecompiledWeb/Index.aspx .
  24. THORLABS Inc datasheet, “Phase and intensity modulators selection guide,” (2011), http://www.thorlabschina.cn/navigation.cfm?guide_id=2090 .
  25. COVEGA Inc datasheet, “Phase and intensity modulators selection guide,” (2009), http://www.lusterinc.com/products/Covega-1.html .
  26. Y. Hua, J. Cui, M. Lu, and Y. Sun, “Study on high-speed LiNbO3 optical waveguide phase modulator with low half-wave voltage,” Trans. Beijing Inst. Technol. 30, 1440–1443 (2010).
  27. L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
    [CrossRef]
  28. M. Lei, L. Feng, and Y. Zhi, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid 3 phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
    [CrossRef]
  29. C. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

2013 (2)

2012 (2)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

2011 (3)

2010 (2)

Y. Hua, J. Cui, M. Lu, and Y. Sun, “Study on high-speed LiNbO3 optical waveguide phase modulator with low half-wave voltage,” Trans. Beijing Inst. Technol. 30, 1440–1443 (2010).

H. Ma, Y. Chen, M. Li, and Z. Jin, “Transient response of a resonator fiber optic gyro with triangular wave phase modulation,” Appl. Opt. 49, 6253–6263 (2010).
[CrossRef]

2009 (1)

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

2008 (3)

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun. 281, 580–586 (2008).
[CrossRef]

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

2007 (2)

Z. Jin, Z. Yang, and H. Ma, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

H. Hsiao and K. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express 15, 17783–17797 (2007).
[CrossRef]

1997 (1)

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

1994 (1)

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE 2292, 272–282 (1994).
[CrossRef]

1992 (1)

L. K. Strandiord and G. A. Sanders, “Resonator optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[CrossRef]

1986 (2)

1977 (1)

S. Ezekiel and S. R. Balsamo, “Passive ring resonator gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Armenise, M. N.

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer, 2010).

Balsamo, S. R.

S. Ezekiel and S. R. Balsamo, “Passive ring resonator gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Chen, Y.

Ciminelli, C.

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer, 2010).

Cui, J.

Y. Hua, J. Cui, M. Lu, and Y. Sun, “Study on high-speed LiNbO3 optical waveguide phase modulator with low half-wave voltage,” Trans. Beijing Inst. Technol. 30, 1440–1443 (2010).

Dell’Olio, F.

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer, 2010).

Ezekiel, S.

F. Zarinetchi and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986).
[CrossRef]

S. Ezekiel and S. R. Balsamo, “Passive ring resonator gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Feng, L.

M. Lei, L. Feng, and Y. Zhi, “Effect of intensity variation of laser in resonator integrated optic gyro,” Appl. Opt. 52, 4576–4581 (2013).
[CrossRef]

M. Lei, L. Feng, and Y. Zhi, “Suppression of backreflection noise in a resonator integrated optic gyro by hybrid 3 phase-modulation technology,” Appl. Opt. 52, 1668–1675 (2013).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Green, W.

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Han, Z.

Harumoto, M.

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

He, Z.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Higashiguchi, M.

Hong, L.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Hotate, K.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25, 4448–4451 (1986).
[CrossRef]

Hsiao, H.

Hua, Y.

Y. Hua, J. Cui, M. Lu, and Y. Sun, “Study on high-speed LiNbO3 optical waveguide phase modulator with low half-wave voltage,” Trans. Beijing Inst. Technol. 30, 1440–1443 (2010).

Iwatsuki, K.

Ji, Z.

Jin, Z.

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

H. Ma, Y. Chen, M. Li, and Z. Jin, “Transient response of a resonator fiber optic gyro with triangular wave phase modulation,” Appl. Opt. 49, 6253–6263 (2010).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun. 281, 580–586 (2008).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

Z. Jin, Z. Yang, and H. Ma, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

Lefevre, C. H.

C. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Lei, M.

Li, M.

Liu, J.

Lu, M.

Y. Hua, J. Cui, M. Lu, and Y. Sun, “Study on high-speed LiNbO3 optical waveguide phase modulator with low half-wave voltage,” Trans. Beijing Inst. Technol. 30, 1440–1443 (2010).

Ma, H.

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643 (2011).
[CrossRef]

H. Ma, Y. Chen, M. Li, and Z. Jin, “Transient response of a resonator fiber optic gyro with triangular wave phase modulation,” Appl. Opt. 49, 6253–6263 (2010).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun. 281, 580–586 (2008).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

Z. Jin, Z. Yang, and H. Ma, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

Mao, H.

Passaro, V.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer, 2010).

Sanders, G. A.

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE 2292, 272–282 (1994).
[CrossRef]

L. K. Strandiord and G. A. Sanders, “Resonator optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[CrossRef]

Schmidt, G.

G. Schmidt, “INS/GPS Technology Trends,” NATO RTO Lecture Series. (2008).

Strandiord, L. K.

L. K. Strandiord and G. A. Sanders, “Resonator optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[CrossRef]

Strandjord, L. K.

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE 2292, 272–282 (1994).
[CrossRef]

Sun, F.

Sun, Y.

Y. Hua, J. Cui, M. Lu, and Y. Sun, “Study on high-speed LiNbO3 optical waveguide phase modulator with low half-wave voltage,” Trans. Beijing Inst. Technol. 30, 1440–1443 (2010).

Vlasov, Y.

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Wang, L.

Wang, X.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Winick, K.

Xiong, J.

Xue, C.

Yan, S.

Yan, Y.

Yang, Z.

Z. Jin, Z. Yang, and H. Ma, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

Ying, D.

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun. 281, 580–586 (2008).
[CrossRef]

Yu, H.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Zarinetchi, F.

Zhang, C.

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Zhang, W.

Zhang, Y.

Zhi, Y.

Zhou, C.

Zhou, Z.

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. Ezekiel and S. R. Balsamo, “Passive ring resonator gyroscope,” Appl. Phys. Lett. 30, 478–480 (1977).
[CrossRef]

Chin. Phys. Lett. (2)

H. Yu, C. Zhang, L. Feng, Z. Zhou, and L. Hong, “SiO2 waveguide resonator used in an integrated optical gyroscope,” Chin. Phys. Lett. 26, 054210 (2009).
[CrossRef]

L. Hong, C. Zhang, L. Feng, H. Yu, and M. Lei, “Frequency modulation induced by using the linear phase modulation method used in a resonator integrated optic gyro,” Chin. Phys. Lett. 29, 14211–14214 (2012).
[CrossRef]

IEEE Photon. J. (1)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, “High-Q spiral resonator for optical gyroscope applications: numerical and experimental investigation,” IEEE Photon. J. 4, 1844–1854 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Jin, Z. Yang, and H. Ma, “Open-loop experiments in a resonator fiber-optic gyro using digital triangle wave phase modulation,” IEEE Photon. Technol. Lett. 19, 1685–1687 (2007).
[CrossRef]

J. Lightwave Technol. (1)

K. Hotate and M. Harumoto, “Resonator fiber optic gyro using digital serrodyne modulation,” J. Lightwave Technol. 15, 466–473 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Opt. Commun. (2)

D. Ying, H. Ma, and Z. Jin, “Dynamic characteristics of R-FOG based on the triangle wave phase modulation technique,” Opt. Commun. 281, 5340–5343 (2008).
[CrossRef]

D. Ying, H. Ma, and Z. Jin, “Resonator fiber optic gyro using the triangle wave phase modulation technique,” Opt. Commun. 281, 580–586 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (2)

L. K. Strandiord and G. A. Sanders, “Resonator optic gyro employing a polarization rotating resonator,” Proc. SPIE 1585, 163–172 (1992).
[CrossRef]

L. K. Strandjord and G. A. Sanders, “Effects of imperfect serrodyne phase modulation in resonator fiber optic gyroscopes,” Proc. SPIE 2292, 272–282 (1994).
[CrossRef]

Trans. Beijing Inst. Technol. (1)

Y. Hua, J. Cui, M. Lu, and Y. Sun, “Study on high-speed LiNbO3 optical waveguide phase modulator with low half-wave voltage,” Trans. Beijing Inst. Technol. 30, 1440–1443 (2010).

Other (8)

G. Schmidt, “INS/GPS Technology Trends,” NATO RTO Lecture Series. (2008).

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. Passaro, Advances in Gyroscope Technologies (Springer, 2010).

C. H. Lefevre, The Fiber-Optic Gyroscope (Artech House, 1993).

Agilent Inc datasheet, “Signal generator selection guide,” (2013), http://cp.literature.agilent.com/litweb/pdf/5990-9956EN.pdf .

Tektronix Inc datasheet, “Signal generator selection guide,” (2010), http://www.tek.com/singal-generator .

Rohde & Schwarz Inc datasheet, “Signal generator selection guide,” (2013), http://www.rohde-schwarz.com.tw/PrecompiledWeb/Index.aspx .

THORLABS Inc datasheet, “Phase and intensity modulators selection guide,” (2011), http://www.thorlabschina.cn/navigation.cfm?guide_id=2090 .

COVEGA Inc datasheet, “Phase and intensity modulators selection guide,” (2009), http://www.lusterinc.com/products/Covega-1.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the RIOG based on DPM.

Fig. 2.
Fig. 2.

Simplified model of the RIOG.

Fig. 3.
Fig. 3.

(a) Relationship between the frequency bias and normalized output intensity under different amplitudes of the triangle waveform and (b) relationship between the slope rate and amplitude of the triangle waveform.

Fig. 4.
Fig. 4.

Test result of RIOG under equivalent input with SPM and DPM. (a) Output of RIOG under different equivalent input and (b) fitting line between equivalent input and output of RIOG.

Fig. 5.
Fig. 5.

RIOG outputs with SPM and DPM.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δf=fccwfcw=4AnλLΩ,
ID=Kf·Δf·I0,
ΔV=ID·R·Rf,
ΔV=KPD·ID,
ΔV=KOPA·ΔV,
D=KADC·V,
D=KDSP·D,
D=KDSP·KADC·KOPA·KPD·Kf·I0·4AnλL·Ω.
K=DΩ=KDSP·KADC·KOPA·KPD·Kf·I0·4AnλL.
Inor=ID(Δf)I0=(1αC)ρ{C02C02+(ΔffFM)2C02C02+(ΔffFM)2},
C0=(11αLCbar1αceΔωτ)·FSR·(2π1αLCbar1αceΔωτ)1,
fFM=2Vpp_triftriV2π,
Kf=dInordΔf4(1αc)ρC02fFM(C02+fFM)2.
4AnλLΩsaw=2Vpp_sawfsawV2π,
Ωsaw=nλL2Afsaw.

Metrics