Abstract

Mid-infrared fiber optical parametric oscillators (MIR FOPOs) based on the degenerate four-wave mixing (DFWM) of tellurite photonic crystal fibers (PCFs) are proposed and modeled for the first time. Using the DFWM coupled-wave equations, numerical simulations are performed to analyze the effects of tellurite PCFs, single-resonant cavity, and pump source on the MIR FOPO performances. The numerical results show that: (1) although a longer tellurite PCF can decrease the pump threshold of MIR FOPOs to a few watts only, the high conversion-efficiency of MIR idler usually requires a short-length optimum PCF with low loss; (2) compared with the single-pass DFWM configurations of the MIR fiber sources published previously, the stable oscillation of signal light in single-resonant cavity can significantly promote the MIR idler output efficiency. With a suggested tellurite PCF as parametric gain medium, the theoretical prediction indicates that such a MIR FOPO could obtain a wide MIR-tunable range and a high conversion efficiency of more than 10%.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription