Abstract

In this paper, we propose a progressive reliable points growing matching scheme to estimate the depth from the speckle projection image. First a self-adapting binarization is introduced to reduce the influence of inconsistent intensity. Then we apply local window-based correlation matching to get the initial disparity map. After the initialization, we formulate a progressive updating scheme to update the disparity estimation. There are two main steps in each round of updation. At first new reliable points are progressively selected based on three aspects of criterion including matching degree, confidence, and left–right consistency; then prediction-based growing matching is adopted to recalculate the disparity map from the reliable points. Finally, the more accurate depth map can be obtained by subpixel interpolation and transformation. The experimental results well demonstrate the effectiveness and low computational cost of our scheme.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription