Abstract

A method has been developed for the stabilization of an internal mirror He–Ne laser to achieve a high frequency reproducibility that is mainly influenced by the temperature of the stabilized laser. However, it is difficult to achieve a reproducible temperature in a short time under different ambient temperatures. In this paper, the He–Ne laser is stabilized based on the relationship between the laser mode number and the laser cavity temperature where a reproducible temperature can be rapidly achieved under different ambient temperatures, resulting in a high frequency reproducibility. Experiments have demonstrated that the He–Ne laser used can be stabilized in approximately 10 min, typically 6 min; the frequency stability is less than 2×1010; the frequency reproducibility is less than 1×109.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Qian, Z. Liu, C. Shi, X. Liu, J. Wang, C. Yin, and S. Cai, “Frequency stabilization of internal-mirror He–Ne lasers by air cooling,” Appl. Opt. 51, 6084–6088 (2012).
    [CrossRef]
  2. T. B. Eom, H. S. Choi, and S. K. Lee, “Frequency stabilization of an internal mirror He–Ne laser by digital control,” Rev. Sci. Instrum. 73, 221–224 (2002).
    [CrossRef]
  3. L. Dejiao, D. Gaoliang, Y. Chunyong, and J. Xiangqian, “Frequency stabilization of transverse Zeeman He–Ne laser by means of model predictive control,” Rev. Sci. Instrum. 77, 123301 (2006).
    [CrossRef]
  4. T. M. Niebauer, J. E. Faller, H. M. Godwin, J. L. Hall, and R. L. Barger, “Frequency stability measurements on polarization-stabilized He–Ne lasers,” Appl. Opt. 27, 1285–1289 (1988).
    [CrossRef]
  5. W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilized He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
    [CrossRef]
  6. P. Zemanek and J. Lazar, “Use of the beat frequency between two modes for frequency stabilization of internal-mirror lasers,” Appl. Opt. 33, 6333–6339 (1994).
    [CrossRef]
  7. P. E. Ciddor and R. M. Duffy, “Two-mode frequency-stabilised He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
    [CrossRef]
  8. N. Umeda, M. Tsukiji, and H. Takasaki, “Stabilized He3–Ne20 transverse Zeeman laser,” Appl. Opt. 19, 442–450 (1980).
    [CrossRef]
  9. M. A. Zumberge, “Frequency stability of a Zeeman-stabilized laser,” Appl. Opt. 24, 1902–1904 (1985).
    [CrossRef]
  10. G. S. Sasagawa and M. A. Zumberge, “Five-year frequency stability of a Zeeman stabilized laser,” Appl. Opt. 28, 824–825 (1989).
    [CrossRef]
  11. T. Baer, F. V. Kowalski, and J. L. Hall, “Frequency stabilization of a 0.633 micron He–Ne longitudinal Zeeman laser,” Appl. Opt. 19, 3173–3177 (1980).
    [CrossRef]
  12. P.-C. Hu, J.-B. Tan, L. Yan, and H.-J. Fu, “Preheating method for frequency stabilized Zeman He–Ne laser based on temperature trajectory control,” Opt. Precis. Eng. 16, 1009–1017(2008).

2012 (1)

2008 (1)

P.-C. Hu, J.-B. Tan, L. Yan, and H.-J. Fu, “Preheating method for frequency stabilized Zeman He–Ne laser based on temperature trajectory control,” Opt. Precis. Eng. 16, 1009–1017(2008).

2006 (1)

L. Dejiao, D. Gaoliang, Y. Chunyong, and J. Xiangqian, “Frequency stabilization of transverse Zeeman He–Ne laser by means of model predictive control,” Rev. Sci. Instrum. 77, 123301 (2006).
[CrossRef]

2002 (1)

T. B. Eom, H. S. Choi, and S. K. Lee, “Frequency stabilization of an internal mirror He–Ne laser by digital control,” Rev. Sci. Instrum. 73, 221–224 (2002).
[CrossRef]

1994 (1)

1990 (1)

W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilized He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
[CrossRef]

1989 (1)

1988 (1)

1985 (1)

1983 (1)

P. E. Ciddor and R. M. Duffy, “Two-mode frequency-stabilised He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

1980 (2)

Baer, T.

Barger, R. L.

Cai, S.

Choi, H. S.

T. B. Eom, H. S. Choi, and S. K. Lee, “Frequency stabilization of an internal mirror He–Ne laser by digital control,” Rev. Sci. Instrum. 73, 221–224 (2002).
[CrossRef]

Chunyong, Y.

L. Dejiao, D. Gaoliang, Y. Chunyong, and J. Xiangqian, “Frequency stabilization of transverse Zeeman He–Ne laser by means of model predictive control,” Rev. Sci. Instrum. 77, 123301 (2006).
[CrossRef]

Ciddor, P. E.

P. E. Ciddor and R. M. Duffy, “Two-mode frequency-stabilised He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

Dejiao, L.

L. Dejiao, D. Gaoliang, Y. Chunyong, and J. Xiangqian, “Frequency stabilization of transverse Zeeman He–Ne laser by means of model predictive control,” Rev. Sci. Instrum. 77, 123301 (2006).
[CrossRef]

Duffy, R. M.

P. E. Ciddor and R. M. Duffy, “Two-mode frequency-stabilised He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

Eom, T. B.

T. B. Eom, H. S. Choi, and S. K. Lee, “Frequency stabilization of an internal mirror He–Ne laser by digital control,” Rev. Sci. Instrum. 73, 221–224 (2002).
[CrossRef]

Faller, J. E.

Fu, H.-J.

P.-C. Hu, J.-B. Tan, L. Yan, and H.-J. Fu, “Preheating method for frequency stabilized Zeman He–Ne laser based on temperature trajectory control,” Opt. Precis. Eng. 16, 1009–1017(2008).

Gaoliang, D.

L. Dejiao, D. Gaoliang, Y. Chunyong, and J. Xiangqian, “Frequency stabilization of transverse Zeeman He–Ne laser by means of model predictive control,” Rev. Sci. Instrum. 77, 123301 (2006).
[CrossRef]

Godwin, H. M.

Hall, J. L.

Hu, P.-C.

P.-C. Hu, J.-B. Tan, L. Yan, and H.-J. Fu, “Preheating method for frequency stabilized Zeman He–Ne laser based on temperature trajectory control,” Opt. Precis. Eng. 16, 1009–1017(2008).

Kowalski, F. V.

Lazar, J.

Lee, S. K.

T. B. Eom, H. S. Choi, and S. K. Lee, “Frequency stabilization of an internal mirror He–Ne laser by digital control,” Rev. Sci. Instrum. 73, 221–224 (2002).
[CrossRef]

Liu, X.

Liu, Z.

Niebauer, T. M.

Qian, J.

Rowley, W. R. C.

W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilized He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
[CrossRef]

Sasagawa, G. S.

Shi, C.

Takasaki, H.

Tan, J.-B.

P.-C. Hu, J.-B. Tan, L. Yan, and H.-J. Fu, “Preheating method for frequency stabilized Zeman He–Ne laser based on temperature trajectory control,” Opt. Precis. Eng. 16, 1009–1017(2008).

Tsukiji, M.

Umeda, N.

Wang, J.

Xiangqian, J.

L. Dejiao, D. Gaoliang, Y. Chunyong, and J. Xiangqian, “Frequency stabilization of transverse Zeeman He–Ne laser by means of model predictive control,” Rev. Sci. Instrum. 77, 123301 (2006).
[CrossRef]

Yan, L.

P.-C. Hu, J.-B. Tan, L. Yan, and H.-J. Fu, “Preheating method for frequency stabilized Zeman He–Ne laser based on temperature trajectory control,” Opt. Precis. Eng. 16, 1009–1017(2008).

Yin, C.

Zemanek, P.

Zumberge, M. A.

Appl. Opt. (7)

J. Phys. E (1)

P. E. Ciddor and R. M. Duffy, “Two-mode frequency-stabilised He–Ne (633 nm) lasers: studies of short- and long-term stability,” J. Phys. E 16, 1223–1227 (1983).
[CrossRef]

Meas. Sci. Technol. (1)

W. R. C. Rowley, “The performance of a longitudinal Zeeman-stabilized He–Ne laser (633 nm) with thermal modulation and control,” Meas. Sci. Technol. 1, 348–351 (1990).
[CrossRef]

Opt. Precis. Eng. (1)

P.-C. Hu, J.-B. Tan, L. Yan, and H.-J. Fu, “Preheating method for frequency stabilized Zeman He–Ne laser based on temperature trajectory control,” Opt. Precis. Eng. 16, 1009–1017(2008).

Rev. Sci. Instrum. (2)

T. B. Eom, H. S. Choi, and S. K. Lee, “Frequency stabilization of an internal mirror He–Ne laser by digital control,” Rev. Sci. Instrum. 73, 221–224 (2002).
[CrossRef]

L. Dejiao, D. Gaoliang, Y. Chunyong, and J. Xiangqian, “Frequency stabilization of transverse Zeeman He–Ne laser by means of model predictive control,” Rev. Sci. Instrum. 77, 123301 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Two adjacent longitudinal modes within the gain curve of an internal mirror He–Ne laser.

Fig. 2.
Fig. 2.

Relationship between the beat frequency and the cavity temperature.

Fig. 3.
Fig. 3.

Relationship between the stabilized temperature and the heating voltage in the conventional stabilized lasers.

Fig. 4.
Fig. 4.

Schematic diagram of the experimental setup. PBS, polarization beam splitter; M1, mirror; PD1 and PD2, photodiode; Amp1 and Amp2, amplifier; A/D, analog-to-digital converter; MCU, microprocessor; D/A, digital-to-analog converter; P-AMP, power amplifier.

Fig. 5.
Fig. 5.

Relationship between mode jump number and cavity temperature.

Fig. 6.
Fig. 6.

Relationship between the stabilized temperature and the heating voltage in the developed stabilized lasers.

Fig. 7.
Fig. 7.

Allan variance of the stabilized He–Ne laser as a function of time.

Fig. 8.
Fig. 8.

Frequency reproducibility of the stabilized He–Ne laser in 14 times.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

υ=mc2nL,
Δυ=c2nL.
d(Δv)=c2nL2dLc2n2Ldn.
N=(TsetT0)/ΔTmod.
Tmod=λ/2αL0.7°C.

Metrics