Abstract

An ultrabroadband polarization splitter based on three-core photonic crystal fiber (PCF) is proposed. Two fluorine-doped cores and an elliptical modulation core are introduced to achieve an excellent performance and an ultrawide bandwidth. Numerical results demonstrate that the polarization splitter based on three-core PCF has an extinction ratio as low as 20dB bandwidth as great as 400 nm covering almost all communication bands (O, E, S, C, and L bands). Its Gaussian-like mode-field distributions and suitable effective mode areas make it highly compatible with the standard single-mode fibers. Due to using a uniform size of circular air holes and only one elliptical central air hole, the difficulty of fabrication can be decreased to some extent.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
    [CrossRef]
  2. T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
    [CrossRef]
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef]
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  5. N. Broderick, T. Monro, P. Bennett, and D. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  6. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30, 2545–2547 (2005).
    [CrossRef]
  7. A. Cerqueira S., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926–931 (2006).
    [CrossRef]
  8. L. Wang and D. Yang, “Highly birefringent elliptical-hole rectangular-lattice photonic crystal fibers with modified air holes near the core,” Opt. Express 15, 8892–8897 (2007).
    [CrossRef]
  9. S. Lou, H. Fang, H. Li, T. Guo, L. Yao, L. Wang, W. Chen, and S. Jian, “Design of broadband nearly-zero flattened dispersion highly nonlinear photonic crystal fiber,” Chin. Opt. Lett. 6, 821–823 (2008).
    [CrossRef]
  10. L. Zhang and C. Yang, “Polarization splitter based on photonic crystal fibers,” Opt. Express 11, 1015–1020 (2003).
    [CrossRef]
  11. J. Lægsgaard, O. Bang, and A. Bjarklev, “Photonic crystal fiber design for broadband directional coupling,” Opt. Lett. 29, 2473–2475 (2004).
    [CrossRef]
  12. L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22, 1367–1373 (2004).
    [CrossRef]
  13. K. Saitoh, Y. Sato, and M. Koshiba, “Polarization splitter in three-core photonic crystal fibers,” Opt. Express 12, 3940–3946 (2004).
    [CrossRef]
  14. N. Florous, K. Saitoh, and M. Koshiba, “A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics,” Opt. Express 13, 7365–7373 (2005).
    [CrossRef]
  15. M.-Y. Chen, B. Sun, Y.-K. Zhang, and X.-X. Fu, “Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber,” Appl. Opt. 49, 3042–3048 (2010).
    [CrossRef]
  16. J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
    [CrossRef]
  17. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, “Polarization splitter based on a square-lattice photonic-crystal fiber,” Opt. Lett. 31, 441–443 (2006).
    [CrossRef]
  18. L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
    [CrossRef]
  19. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
    [CrossRef]
  20. M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. 85, 881–888 (2002).
  21. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. M. De Sterke, and L. Botten, “Multipole method for microstructured optical fibers. I—formulation,” J. Opt. Soc. Am. B 19, 2322–2330 (2002).
    [CrossRef]
  22. F. Fogli, L. Saccomandi, P. Bassi, G. Bellanca, and S. Trillo, “Full vectorial BPM modeling of index-guiding photonic crystal fibers and couplers,” Opt. Express 10, 54–59 (2002).
    [CrossRef]
  23. K. Saitoh, Y. Sato, and M. Koshiba, “Coupling characteristics of dual-core photonic crystal fiber couplers,” Opt. Express 11, 3188–3195 (2003).
    [CrossRef]
  24. M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
    [CrossRef]
  25. S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
    [CrossRef]
  26. N. A. Issa, M. A. Van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336–1338 (2004).
    [CrossRef]

2011

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

S. Lou, Z. Tang, and L. Wang, “Design and optimization of broadband and polarization-insensitive dual-core photonic crystal fiber coupler,” Appl. Opt. 50, 2016–2023 (2011).
[CrossRef]

2010

2008

2007

2006

2005

2004

2003

2002

2000

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

1999

1998

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

1997

1995

T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

1991

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

1990

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Atkin, D.

T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Bang, O.

Bassi, P.

Bellanca, G.

Bennett, P.

Birks, T.

T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Birks, T. A.

Bjarklev, A.

Bland-Hawthorn, J.

Botten, L.

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Broderick, N.

Cerqueira S., A.

Chen, M.-Y.

Chen, W.

Chu, P.

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Cordeiro, C. M. B.

Cox, F.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Cucinotta, A.

de Sandro, P. D.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

De Sterke, C. M.

Eisenmann, M.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

Englund, M.

Fang, H.

Fellew, M.

Florous, N.

Fogli, F.

Foroni, M.

Fu, X.-X.

George, A. K.

Guo, T.

Henry, G.

Issa, N. A.

Jian, S.

Knight, J. C.

Koshiba, M.

Kuhlmey, B.

Lægsgaard, J.

Large, M. C. J.

Leon-Saval, S. G.

Li, H.

Li, J. H.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Liu, Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Lou, S.

Luan, F.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Maystre, D.

McPhedran, R.

Monro, T.

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Peng, G.

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Poli, F.

Renversez, G.

Richardson, D.

Roberts, P.

T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Rosa, L.

Roy, P.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Russell, P. S. J.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
[CrossRef]

T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Saccomandi, L.

Saitoh, K.

Sato, Y.

Selleri, S.

Shepherd, T.

T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

Sun, B.

Tang, Z.

Tjugiarto, T.

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

Trillo, S.

Van Eijkelenborg, M. A.

Wang, J. Y.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Wang, L.

Wang, R.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Weidel, E.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

White, T.

Yang, C.

Yang, D.

Yao, L.

Zhang, L.

Zhang, Y.-K.

Appl. Opt.

Chin. Opt. Lett.

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and P. D. de Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

G. Peng, T. Tjugiarto, and P. Chu, “Polarisation beam splitting using twin-elliptic-core optical fibres,” Electron. Lett. 26, 682–683 (1990).
[CrossRef]

T. Birks, P. Roberts, P. S. J. Russell, D. Atkin, and T. Shepherd, “Full 2-D photonic bandgaps in silica/air structures,” Electron. Lett. 31, 1941–1943 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Zhang and C. Yang, “A novel polarization splitter based on the photonic crystal fiber with nonidentical dual cores,” IEEE Photon. Technol. Lett. 16, 1670–1672 (2004).
[CrossRef]

IEICE Trans. Electron.

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. 85, 881–888 (2002).

J. Lightwave Technol.

M. Eisenmann and E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991).
[CrossRef]

L. Zhang and C. Yang, “Polarization-dependent coupling in twin-core photonic crystal fibers,” J. Lightwave Technol. 22, 1367–1373 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Technol.

F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method,” Opt. Fiber Technol. 6, 181–191 (2000).
[CrossRef]

Opt. Laser Technol.

J. H. Li, J. Y. Wang, R. Wang, and Y. Liu, “A novel polarization splitter based on dual-core hybrid photonic crystal fibers,” Opt. Laser Technol. 43, 795–800 (2011).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross section of the proposed three-core PCF.

Fig. 2.
Fig. 2.

Power flows of the even mode in (a)  y polarization and (b) in x polarization, and of the odd mode (c) in y polarization and (d) in x polarization. The arrows are the directions of the corresponding electric field vector.

Fig. 3.
Fig. 3.

Coupling lengths of x polarization and y polarization versus wavelength.

Fig. 4.
Fig. 4.

Normalized power of x - and y -polarization lights in (a) core A and (b) core B. The dashed line indicates the splitter length.

Fig. 5.
Fig. 5.

ER of the splitter versus wavelength.

Fig. 6.
Fig. 6.

ER versus wavelength with different Δ d .

Fig. 7.
Fig. 7.

ER versus wavelength with different Δ e : keeping (a) r x invariant and (b) r y invariant.

Tables (1)

Tables Icon

Table 1. Performance Changes with Changes of Structural Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L c x , y = λ 2 ( n e x , y n o x , y ) ,
P out A = P out A x + P out A y = P in x cos 2 C x L + P in y cos 2 C y L ,
P out B = P out B x + P out B y = P in x sin 2 C x L + P in y sin 2 C y L ,
C x = k 0 ( n e x n o x ) / 2 = π / 2 L c x , C y = k 0 ( n e y n o y ) / 2 = π / 2 L c y ,
ER = 10 lg light power of x polarization light power of y polarization = 10 lg P out A x P out A y .

Metrics