Abstract

Accurate positioning of a sample is one of the primary challenges in laser micromanufacturing. There are a number of methods that allow detection of the surface position; however, only a few of them use the beam of the processing laser as a basis for the measurement. Those methods have an advantage that any changes in the processing laser beam can be inherently accommodated. This work describes a direct, contact-free method to accurately determine workpiece position with respect to the structuring laser beam focal plane based on nonlinear harmonic generation. The method makes workpiece alignment precise and time efficient due to ease of automation and provides the repeatability and accuracy of the surface detection of less than 1 μm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photonics Spectra (October 2006), http://www.photonics.com/Article.aspx?AID=26907 .
  2. S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE 7920, 792006 (2011).
    [CrossRef]
  3. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93–95 (2001).
    [CrossRef]
  4. Aerotech Nanopositioners Catalog, http://www.aerotech.com/media/116356/nanomotioncatalog-en.pdf .
  5. Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
    [CrossRef]
  6. J. S. Wilson, Sensor Technology Handbook (Elsevier, 2005).
  7. G. Bouwhuis, Principles of Optical Disc Systems (Hilger, 1985).
  8. X. Liu, “Method and apparatus for determining focus position of a laser,” U. S. patent 6,303,903 (16October2001).
  9. B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
    [CrossRef]
  10. K. Weingarten, “Optimizing cold ablation processing with picosecond micromachining,” Laser Photon. 2012, 44–46 (2012).
  11. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, and H. Helvajian, “Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses,” Opt. Express 19, 22961–22973 (2011).
    [CrossRef]
  12. W. Lotz, “Electron binding energies in free atoms,” J. Opt. Soc. Am. 60, 206–210 (1970).
    [CrossRef]
  13. T. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
    [CrossRef]
  14. G. Berkovic, R. Superfine, P. Guyot-Sionnest, Y. R. Shen, and P. N. Prasad, “Study of diacetylene monomer and polymer monolayers using second- and third-harmonic generation,” J. Opt. Soc. Am. B 5, 668–673 (1988).
    [CrossRef]
  15. A. J. Glass and A. H. Guenther, “Laser induced damage of optical elements—a status report,” Appl. Opt. 12, 637–649 (1973).
    [CrossRef]
  16. Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989).
    [CrossRef]

2012 (1)

K. Weingarten, “Optimizing cold ablation processing with picosecond micromachining,” Laser Photon. 2012, 44–46 (2012).

2011 (2)

2001 (1)

1999 (1)

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

1995 (1)

T. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef]

1989 (2)

Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989).
[CrossRef]

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

1988 (1)

1973 (1)

1970 (1)

Berkovic, G.

Bouwhuis, G.

G. Bouwhuis, Principles of Optical Disc Systems (Hilger, 1985).

Brodeur, A.

Chien, C. Y.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Comtois, D.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Cvecek, K.

Desparois, A.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

García, J. F.

Glass, A. J.

Guenther, A. H.

Guyot-Sionnest, P.

Helvajian, H.

Ji, Z.

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

Jiang, Z.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Johnston, T. W.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Kieffer, J.-C.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

La Fontaine, B.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Leu, M. C.

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

Liu, X.

X. Liu, “Method and apparatus for determining focus position of a laser,” U. S. patent 6,303,903 (16October2001).

Lotz, W.

Mazur, E.

Mercure, H. P.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Miyamoto, I.

Okamoto, Y.

Pépin, H.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Prasad, P. N.

Roth, S.

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

Schaffer, C. B.

Schmidt, M.

Shen, Y. R.

Superfine, R.

Tsang, T.

T. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef]

Vidal, F.

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Weingarten, K.

K. Weingarten, “Optimizing cold ablation processing with picosecond micromachining,” Laser Photon. 2012, 44–46 (2012).

Wilson, J. S.

J. S. Wilson, Sensor Technology Handbook (Elsevier, 2005).

Annu. Rev. Phys. Chem. (1)

Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Laser Photon. (1)

K. Weingarten, “Optimizing cold ablation processing with picosecond micromachining,” Laser Photon. 2012, 44–46 (2012).

Opt. Express (1)

Opt. Laser Technol. (1)

Z. Ji and M. C. Leu, “Design of optical triangulation devices,” Opt. Laser Technol. 21, 339–341 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (1)

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, “Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air,” Phys. Plasmas 6, 1615–1621 (1999).
[CrossRef]

Phys. Rev. A (1)

T. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52, 4116–4125 (1995).
[CrossRef]

Proc. SPIE (1)

S. Roth, K. Cvecek, I. Miyamoto, and M. Schmidt, “Glass welding technology using ultra short laser pulses,” Proc. SPIE 7920, 792006 (2011).
[CrossRef]

Other (5)

A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photonics Spectra (October 2006), http://www.photonics.com/Article.aspx?AID=26907 .

Aerotech Nanopositioners Catalog, http://www.aerotech.com/media/116356/nanomotioncatalog-en.pdf .

J. S. Wilson, Sensor Technology Handbook (Elsevier, 2005).

G. Bouwhuis, Principles of Optical Disc Systems (Hilger, 1985).

X. Liu, “Method and apparatus for determining focus position of a laser,” U. S. patent 6,303,903 (16October2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic setup for laser material processing: laser beam focus is positioned on the workpiece (red solid curve) and one Rayleigh range before the workpiece (blue dashed curve). Here the positioning accuracy is defined as the distance between the laser beam focal plane and the sample surface.

Fig. 2.
Fig. 2.

Schematic setup for workpiece position detection based on the backreflected signal. In the actual experimental setup, the focusing lens is an Olympus LMPlan IT 50X/0.55 microscope objective, the tube lens is 75 mm focal length closed-circuit television (CCTV) Tamron 1A1HB lens, and the dielectric 45° mirror is highly reflective for 1064 nm wavelength. The inset shows a typical signal recorded by the digital camera as a function of the focusing lens position.

Fig. 3.
Fig. 3.

Schematic demonstration of the object plane displacement in the confocal imaging setup (a) due to variation in the tube lens position with respect to the imaging sensor and (b) due to variation in the focal length of the tube lens. By adjusting either the focal length of the tube lens or the lens position, it is possible to overlap the object plane of the imaging system with the focal plane of the focused laser beam [middle column in (a) and (b)].

Fig. 4.
Fig. 4.

Variation of the object plane position (experimental measurements) as a function of the tube lens setting. The connecting line is for visual aid only. The position reproducibility has been measured to be 290 nm (standard deviation).

Fig. 5.
Fig. 5.

Brightness (red circles) and size (blue squares) of a laser-generated plasma spark as detected by the imaging sensor as a function of the tube lens setting. The connecting lines are for visual aid only. The inset shows images of the laser-generated plasma breakdown for several tube lens settings around the optimal configuration.

Fig. 6.
Fig. 6.

Experimental setup for detection of the surface-generated third harmonic. The harmonic is generated by the tightly focused laser beam on the upper (lower) surface of a glass workpiece, refocused with a 25 mm focal length lens and separated from the primary wavelength with a combination of a dielectric mirror centered at 355 nm, a notch filter for the primary wavelength, and a laser line filter for 355 nm wavelength. The signal is recorded with a USB black and white CMOS camera. The laser focus position is adjusted via displacement of the focusing objective mounted on a linear translation stage.

Fig. 7.
Fig. 7.

Brightness of the THG signal as a function of the laser focus displacement. The solid blue curve is the raw signal, and the dashed red curve is the fitting line (quadratic Lorentzian function). The FWHM of the signal is measured to be 4.15 μm (average). The inset shows overlap of 23 raw THG signals obtained under identical experimental conditions to demonstrate high reproducibility of the data.

Fig. 8.
Fig. 8.

Detection of a glass sample upper surface using the backreflection (BR) [raw (blue solid curve) and fitted (red dashed curve)] and THG [raw (green solid curve) and fitted (dashed black curve)] signals. The backreflected signal is fitted with a Lorentzian curve. The tube lens in the confocal imaging system was set at mark m7.5.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ1=(df2f12f22f12Δ2)1,

Metrics