Abstract

Research into the integration of optical interconnects in printed circuit boards (PCBs) is rapidly gaining interest due to the increase in data transfer speeds now required along with the need for miniaturized devices with increased complexity and functionality. We present a method that involves embedding optoelectronic components in a polymeric material and fabricating optical waveguides in one step. A silanol-terminated polysiloxane cross-linked with an acryloxy functional silane is utilized as a matrix material into which the 3D optical waveguides are inscribed by two-photon-induced polymerization. A pulsed femtosecond laser is used to directly write optical waveguides into the material, forming an optical link between lasers and photodiodes that are directly mounted on a specially designed PCB. The boards produced were characterized by monitoring the transmitted photocurrent as well as temperature-dependent data transmission properties. Data rates exceeding 4Gbit/s were achieved.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
    [CrossRef]
  2. C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
    [CrossRef]
  3. B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
    [CrossRef]
  4. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [CrossRef]
  5. K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80, 621–626 (2005).
    [CrossRef]
  6. H. B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci. 170, 169–273 (2004).
  7. M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).
  8. H.-B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21, 624–633 (2003).
    [CrossRef]
  9. S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
    [CrossRef]
  10. M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
    [CrossRef]
  11. R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
    [CrossRef]
  12. C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
    [CrossRef]
  13. N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
    [CrossRef]

2012

2010

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

2009

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

2008

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[CrossRef]

2007

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

2006

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[CrossRef]

2005

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80, 621–626 (2005).
[CrossRef]

2004

H. B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci. 170, 169–273 (2004).

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

2003

C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[CrossRef]

H.-B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21, 624–633 (2003).
[CrossRef]

2001

B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
[CrossRef]

1996

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Amano, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Balthasar, G.

Berger, C.

C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[CrossRef]

Fazlic, A.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Freude, W.

Gadonas, R.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

Gescheidt, G.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

Gilbergs, H.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

Gu, M.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[CrossRef]

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Guttmann, J.

B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
[CrossRef]

Hayashida, S.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Heller, C.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Hikita, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Hillerkuss, D.

Houbertz, R.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[CrossRef]

Huber, H.-P.

B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
[CrossRef]

Imamura, S.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Jordan, M.

Kalinyaprak-Icten, K.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Kawata, S.

H. B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci. 170, 169–273 (2004).

H.-B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21, 624–633 (2003).
[CrossRef]

Koos, C.

Kossel, M. A.

C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[CrossRef]

Kuna, L.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Langer, G.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[CrossRef]

Leeb, W.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[CrossRef]

Leuthold, J.

Lichtenegger, H. C.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Lindenmann, N.

Liska, R.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Lunitz, B.

B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
[CrossRef]

Malinauskas, M.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

Menolfi, C.

C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[CrossRef]

Moisel, J.

B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
[CrossRef]

Nguyen, L. H.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Paipulas, D.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

Pucher, N.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Pun, E. Y. B.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80, 621–626 (2005).
[CrossRef]

Purlys, V.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

Rode, M.

B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
[CrossRef]

Rosspeintner, A.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

Satzinger, V.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Schmatz, M. L.

C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[CrossRef]

Schmid, V.

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[CrossRef]

Schmidt, V.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Schmogrow, R.

Seidl, B.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Serbin, J.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[CrossRef]

Stampfl, J.

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Straub, M.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Sugawara, S.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Sun, H. B.

H. B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci. 170, 169–273 (2004).

Sun, H.-B.

Toifl, T.

C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[CrossRef]

Tung, K. K.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80, 621–626 (2005).
[CrossRef]

Ullrich, G.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Usui, M.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Watanabe, T.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

Wong, W. H.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80, 621–626 (2005).
[CrossRef]

Wu, S.

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[CrossRef]

Žukauskas, A.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

Adv. Polym. Sci.

H. B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,” Adv. Polym. Sci. 170, 169–273 (2004).

Appl. Phys.

K. K. Tung, W. H. Wong, and E. Y. B. Pun, “Polymeric optical waveguides using direct ultraviolet photolithography process,” Appl. Phys. 80, 621–626 (2005).
[CrossRef]

Electron. Lett.

B. Lunitz, J. Guttmann, H.-P. Huber, J. Moisel, and M. Rode, “Experimental demonstration of 2.5  Gbit/s transmission with 1 m polymer optical backplane,” Electron. Lett. 37, 1079–1081 (2001).
[CrossRef]

J. Lightwave Technol.

M. Usui, M. Hikita, T. Watanabe, M. Amano, S. Sugawara, S. Hayashida, and S. Imamura, “Low-loss passive polymer optical waveguides with high environmental stability,” J. Lightwave Technol. 14, 2338–2343 (1996).
[CrossRef]

H.-B. Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” J. Lightwave Technol. 21, 624–633 (2003).
[CrossRef]

J. Opt.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12, 124010 (2010).

J. Photochem. Photobiol. A

S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” J. Photochem. Photobiol. A 181, 1–11 (2006).
[CrossRef]

J. Polym. Sci.

C. Heller, N. Pucher, B. Seidl, K. Kalinyaprak-Icten, G. Ullrich, L. Kuna, V. Satzinger, V. Schmidt, H. C. Lichtenegger, J. Stampfl, and R. Liska, “One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift,” J. Polym. Sci. 45, 3280–3291 (2007).
[CrossRef]

Macromolecules

N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, and R. Liska, “Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process,” Macromolecules 42, 6519–6528 (2009).
[CrossRef]

Opt. Express

Opt. Mater.

M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped three-dimensional microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004).
[CrossRef]

Proc. SPIE

R. Houbertz, V. Satzinger, V. Schmid, W. Leeb, and G. Langer, “Optoelectronic printed circuit board: 3D structures written by two-photon absorption,” Proc. SPIE 7053, 70530B (2008).
[CrossRef]

C. Berger, M. A. Kossel, C. Menolfi, T. Toifl, and M. L. Schmatz, “High-density optical interconnects within large-scale systems,” Proc. SPIE 4942, 222–235 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Structure of acryloxymethyl trimethoxysilane, silanol-terminated dimethyl diphenyl polysiloxane, and possible cross-linking reactions of polymer and cross-linker.

Fig. 2.
Fig. 2.

Flexible optoelectronic PCB.

Fig. 3.
Fig. 3.

(Top) Rigid PCB with optical interconnections. Highly enlarged photographs of (lower left) the laser diode and (lower right) the photodiode.

Fig. 4.
Fig. 4.

(left) Optical microscope image of a waveguide bundle cross section structured with a laser power of 200 μW and (right) phase contrast microscopy of TPA structured waveguides.

Fig. 5.
Fig. 5.

Photocurrent measurements of PCB demonstrators directly after and after storage (photocurrent measured between one week and one month after TPA structuring).

Fig. 6.
Fig. 6.

Setup for measuring the photocurrent Id versus ambient temperature Ta. DUT, device under test; LD, laser diode; PD, photodiode.

Fig. 7.
Fig. 7.

Optical loss A versus ambient temperature Ta of two PCBs. (I designates the laser current).

Fig. 8.
Fig. 8.

Setup for measuring the bit error ratio versus data rate R.

Fig. 9.
Fig. 9.

BER versus data rate of two PCBs.

Fig. 10.
Fig. 10.

Eye diagram recorded at a temperature of Ta=+40°C at a data rate of R=4Gbit/s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A(Ta)=10·log10(Pl(Ta)Pd(Ta))=10·log10(S·Pl(Ta)Id(Ta)).

Metrics