Abstract

As semiconductor optical lithography is pushed to smaller dimensions, resolution enhancement techniques have been required to maintain process yields. For some time, the customization of illumination coherence at the source plane has allowed for the control of diffraction order distribution across the projection lens pupil. Phase shifting at the photomask plane has allowed for some phase control as well. Geometries smaller than the imaging wavelength introduce complex wavefront effects that cannot be corrected at source or mask planes. Three-dimensional photomask topography effects can cause a loss of both focal depth and exposure latitude across geometry of varying density. Wavefront manipulation at the lens pupil plane becomes necessary to provide the degrees of freedom needed to correct for such effects. The focus of this research is the compensation of the wavefront phase error introduced by the topographical photomask structures of high resolution phase shift masking combined with off-axis illumination. The compensation is realized through phase manipulation of the lens pupil plane, specifically in the form of spherical aberration. Subwavelength resolution optimization and imaging is presented showing how phase pupil filtering can measurably improve the depth of focus for several photomask structures and types.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Englebart, “Microelectronics and the art of similitude,” in Solid-State Circuits Conference. Digest of Technical Papers. 1960 IEEE International (IEEE, 1960), Vol. III, pp. 76–77.
  2. G. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).
    [CrossRef]
  3. B. W. Smith, “The saga of lambda: spectral influences throughout lithography generations,” Proc. SPIE 8325, 83250Z (2012).
    [CrossRef]
  4. K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
    [CrossRef]
  5. B. W. Smith, “Optics for photolithography,” in Microlithography: Science and Technology, B. W. Smith and K. Suzuki, eds., 2nd ed. (CRC, 2007), pp. 149–242.
  6. M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1982), pp. 1828–1836.
  7. G. O. Reynolds, “A concept for a high resolution optical lithographic system for producing one-half micron linewidths,” Proc. SPIE 633, 228–238 (1986).
    [CrossRef]
  8. J. E. Gortych and D. M. Williamson, “Effects of higher order aberrations on the process window,” Proc. SPIE 1463, 368–381 (1991).
    [CrossRef]
  9. J. Tsujiuchi, “A density filter improving aberrant optical image,” J. Phys. Soc. Jpn. 12, 744 (1957).
    [CrossRef]
  10. B. W. Smith, “Multi-layered attenuated phase shift mask and a method for making the mask,” U.S. patent 5939227(17August1999).
  11. V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
    [CrossRef]
  12. H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
    [CrossRef]
  13. H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys. 31, 4126–4130 (1992).
    [CrossRef]
  14. R. M. von Buenau, H. Fukuda, and T. Terasawa, “Effects of radially nonsymmetric pupil filters and multiple-pupil exposure,” Proc. SPIE 2726, 375–385 (1996).
    [CrossRef]
  15. F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
    [CrossRef]
  16. T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” Proc. SPIE 8326, 83260I (2012).
    [CrossRef]
  17. P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011).
    [CrossRef]
  18. J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
    [CrossRef]
  19. J. Finders and T. Hollink, “Mask 3D effects: impact on imaging and placement,” Proc. SPIE 7985, 79850I (2011).
    [CrossRef]
  20. B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” Proc. SPIE 5377, 68–79 (2004).
    [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  22. M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
    [CrossRef]
  23. K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
    [CrossRef]
  24. M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).
  25. A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).
  26. S. Luke, “Essentials of metaheuristics,” http://cs.gmu.edu/~sean/book/metaheuristics/ .
  27. F. Glover and C. McMillan, “The general employee scheduling problem. An integration of MS and AI,” Comput. Oper. Res. 13, 563–573 (1986).
    [CrossRef]
  28. M. Kempsell Sears and B. Smith, “Modeling the effects of pupil manipulated spherical aberration in optical nanolithography,” J. Microlithogr. Microfabr. Microsyst., doc. ID 12102, (posted 29 November 2012, in press).
  29. T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
    [CrossRef]
  30. A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.
  31. S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
    [CrossRef]
  32. JSR Corporation, “Electronic materials,” http://www.jsr.co.jp/jsr_e/pd/ec_index.shtml .
  33. Fujifilm, “OPD 262: developer without surfactant,” http://www.fujifilmusa.com/products/semiconductor_materials/photoresist-ancillaries/developers/index.html#overview .
  34. KLA-Tencor, “ProDATA advanced CD analysis software—lithography modeling,” http://www.kla-tencor.com/lithography-modeling/pro-data.html .
  35. A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase-shifting masks,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1994), pp. 895–902.
  36. L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
    [CrossRef]
  37. A. Erdmann, “Topography effects and wave aberrations in advanced PSM technology,” Proc. SPIE 4346, 345–355 (2001).
    [CrossRef]
  38. M. Kempsell Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
    [CrossRef]

2012 (4)

B. W. Smith, “The saga of lambda: spectral influences throughout lithography generations,” Proc. SPIE 8325, 83250Z (2012).
[CrossRef]

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” Proc. SPIE 8326, 83260I (2012).
[CrossRef]

M. Kempsell Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[CrossRef]

2011 (5)

S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
[CrossRef]

P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011).
[CrossRef]

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

J. Finders and T. Hollink, “Mask 3D effects: impact on imaging and placement,” Proc. SPIE 7985, 79850I (2011).
[CrossRef]

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[CrossRef]

2010 (2)

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

2009 (1)

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

2007 (1)

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

2005 (1)

L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
[CrossRef]

2004 (1)

B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” Proc. SPIE 5377, 68–79 (2004).
[CrossRef]

2002 (1)

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

2001 (1)

A. Erdmann, “Topography effects and wave aberrations in advanced PSM technology,” Proc. SPIE 4346, 345–355 (2001).
[CrossRef]

1996 (1)

R. M. von Buenau, H. Fukuda, and T. Terasawa, “Effects of radially nonsymmetric pupil filters and multiple-pupil exposure,” Proc. SPIE 2726, 375–385 (1996).
[CrossRef]

1992 (1)

H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys. 31, 4126–4130 (1992).
[CrossRef]

1991 (2)

H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

J. E. Gortych and D. M. Williamson, “Effects of higher order aberrations on the process window,” Proc. SPIE 1463, 368–381 (1991).
[CrossRef]

1986 (2)

G. O. Reynolds, “A concept for a high resolution optical lithographic system for producing one-half micron linewidths,” Proc. SPIE 633, 228–238 (1986).
[CrossRef]

F. Glover and C. McMillan, “The general employee scheduling problem. An integration of MS and AI,” Comput. Oper. Res. 13, 563–573 (1986).
[CrossRef]

1981 (1)

1965 (1)

G. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).
[CrossRef]

1957 (1)

J. Tsujiuchi, “A density filter improving aberrant optical image,” J. Phys. Soc. Jpn. 12, 744 (1957).
[CrossRef]

Andryzhyieuskaya, A.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Bakker, H.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

Beckaert, J.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

Beems, M.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Bekaert, J.

M. Kempsell Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[CrossRef]

Birkner, R.

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

Castenmiller, T.

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

Chen, A.

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

Citarella, G.

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

Cork, C.

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

De Bisschop, P.

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

de Kort, T.

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

de Wit, M.

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

Degel, W.

L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
[CrossRef]

Dusa, M.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

Emer, W.

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

Engblom, P.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Englebart, D.

D. Englebart, “Microelectronics and the art of similitude,” in Solid-State Circuits Conference. Digest of Technical Papers. 1960 IEEE International (IEEE, 1960), Vol. III, pp. 76–77.

Enomoto, Y.

S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
[CrossRef]

Erdmann, A.

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” Proc. SPIE 8326, 83260I (2012).
[CrossRef]

P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011).
[CrossRef]

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

A. Erdmann, “Topography effects and wave aberrations in advanced PSM technology,” Proc. SPIE 4346, 345–355 (2001).
[CrossRef]

Estroff, A.

B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” Proc. SPIE 5377, 68–79 (2004).
[CrossRef]

Evanschitzky, P.

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” Proc. SPIE 8326, 83260I (2012).
[CrossRef]

P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011).
[CrossRef]

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

Fenger, G.

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[CrossRef]

Finders, J.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

J. Finders and T. Hollink, “Mask 3D effects: impact on imaging and placement,” Proc. SPIE 7985, 79850I (2011).
[CrossRef]

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

Fuhner, T.

P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011).
[CrossRef]

Fühner, T.

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” Proc. SPIE 8326, 83260I (2012).
[CrossRef]

Fujii, K.

S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
[CrossRef]

Fukuda, H.

R. M. von Buenau, H. Fukuda, and T. Terasawa, “Effects of radially nonsymmetric pupil filters and multiple-pupil exposure,” Proc. SPIE 2726, 375–385 (1996).
[CrossRef]

H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys. 31, 4126–4130 (1992).
[CrossRef]

H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Gaylord, T. K.

Glover, F.

F. Glover and C. McMillan, “The general employee scheduling problem. An integration of MS and AI,” Comput. Oper. Res. 13, 563–573 (1986).
[CrossRef]

Gortych, J. E.

J. E. Gortych and D. M. Williamson, “Effects of higher order aberrations on the process window,” Proc. SPIE 1463, 368–381 (1991).
[CrossRef]

Gruner, T.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Hollink, T.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

J. Finders and T. Hollink, “Mask 3D effects: impact on imaging and placement,” Proc. SPIE 7985, 79850I (2011).
[CrossRef]

Janssen, M.

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

Kamimura, S.

S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
[CrossRef]

Kasprowicz, B.

L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
[CrossRef]

Katou, K.

S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
[CrossRef]

Laenens, B.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

Lamantia, M.

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

Levenson, M. D.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1982), pp. 1828–1836.

Linders, J.

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

Look, L. V.

L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
[CrossRef]

Lucas, K.

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

Luk-Pat, G.

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

Mailfert, J.

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[CrossRef]

McMillan, C.

F. Glover and C. McMillan, “The general employee scheduling problem. An integration of MS and AI,” Comput. Oper. Res. 13, 563–573 (1986).
[CrossRef]

Mesuda, K.

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

Moerman, R.

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

Moharam, M. G.

Moore, G.

G. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).
[CrossRef]

Mulkens, J.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Nachtwein, A.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Nagatomo, T.

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

Neureuther, A. R.

A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase-shifting masks,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1994), pp. 895–902.

Nikolsky, P.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

Okazaki, S.

H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Painter, B.

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

Pan, D. Z.

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

Philipsen, V.

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

Reynolds, G. O.

G. O. Reynolds, “A concept for a high resolution optical lithographic system for producing one-half micron linewidths,” Proc. SPIE 633, 228–238 (1986).
[CrossRef]

Richter, R.

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

Rohe, T.

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

Scherubl, T.

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

Sears, M. K.

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[CrossRef]

Sears, M. Kempsell

M. Kempsell Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[CrossRef]

M. Kempsell Sears and B. Smith, “Modeling the effects of pupil manipulated spherical aberration in optical nanolithography,” J. Microlithogr. Microfabr. Microsyst., doc. ID 12102, (posted 29 November 2012, in press).

Shao, F.

P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011).
[CrossRef]

Simpson, R. A.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1982), pp. 1828–1836.

Smith, B.

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[CrossRef]

M. Kempsell Sears and B. Smith, “Modeling the effects of pupil manipulated spherical aberration in optical nanolithography,” J. Microlithogr. Microfabr. Microsyst., doc. ID 12102, (posted 29 November 2012, in press).

Smith, B. W.

B. W. Smith, “The saga of lambda: spectral influences throughout lithography generations,” Proc. SPIE 8325, 83250Z (2012).
[CrossRef]

M. Kempsell Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[CrossRef]

B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” Proc. SPIE 5377, 68–79 (2004).
[CrossRef]

B. W. Smith, “Multi-layered attenuated phase shift mask and a method for making the mask,” U.S. patent 5939227(17August1999).

B. W. Smith, “Optics for photolithography,” in Microlithography: Science and Technology, B. W. Smith and K. Suzuki, eds., 2nd ed. (CRC, 2007), pp. 149–242.

Staals, F.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Stegen, R.

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

Tarantola, A.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).

Tarutani, S.

S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
[CrossRef]

Terasawa, T.

R. M. von Buenau, H. Fukuda, and T. Terasawa, “Effects of radially nonsymmetric pupil filters and multiple-pupil exposure,” Proc. SPIE 2726, 375–385 (1996).
[CrossRef]

H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Theeuwes, T.

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

Tonooka, Y.

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

Tsujiuchi, J.

J. Tsujiuchi, “A density filter improving aberrant optical image,” J. Phys. Soc. Jpn. 12, 744 (1957).
[CrossRef]

van Cleef, S.

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

van de Mast, F.

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

van de Vin, C.

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

van der Laan, H.

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

van Dommelen, Y.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

van I. Schenau, K.

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

van Ingen Schenau, K.

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

Van Look, L.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

van Schoot, J.

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

Vandenberghe, G.

L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
[CrossRef]

Vandeweyer, T.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

Viswanathan, N. S.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1982), pp. 1828–1836.

von Buenau, R. M.

R. M. von Buenau, H. Fukuda, and T. Terasawa, “Effects of radially nonsymmetric pupil filters and multiple-pupil exposure,” Proc. SPIE 2726, 375–385 (1996).
[CrossRef]

Wada, S.

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

Watso, R.

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

Willekers, R.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Williamson, D. M.

J. E. Gortych and D. M. Williamson, “Effects of higher order aberrations on the process window,” Proc. SPIE 1463, 368–381 (1991).
[CrossRef]

Wong, A. K.

A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase-shifting masks,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1994), pp. 895–902.

Yamana, M.

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

Yamanaka, R.

H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys. 31, 4126–4130 (1992).
[CrossRef]

Yu, B.

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

Zavyalova, L. V.

B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” Proc. SPIE 5377, 68–79 (2004).
[CrossRef]

Zellenrath, M.

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

Zhang, Y.

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

Zibold, A.

L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
[CrossRef]

Comput. Oper. Res. (1)

F. Glover and C. McMillan, “The general employee scheduling problem. An integration of MS and AI,” Comput. Oper. Res. 13, 563–573 (1986).
[CrossRef]

Electronics (1)

G. Moore, “Cramming more components onto integrated circuits,” Electronics 38, 114–117 (1965).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Soc. Jpn. (1)

J. Tsujiuchi, “A density filter improving aberrant optical image,” J. Phys. Soc. Jpn. 12, 744 (1957).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H. Fukuda, T. Terasawa, and S. Okazaki, “Spatial filtering for depth of focus and resolution enhancement in optical lithography,” J. Vac. Sci. Technol. B 9, 3113–3116 (1991).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Fukuda and R. Yamanaka, “A new pupil filter for annular illumination in optical lithography,” Jpn. J. Appl. Phys. 31, 4126–4130 (1992).
[CrossRef]

Proc. SPIE (20)

R. M. von Buenau, H. Fukuda, and T. Terasawa, “Effects of radially nonsymmetric pupil filters and multiple-pupil exposure,” Proc. SPIE 2726, 375–385 (1996).
[CrossRef]

F. Staals, A. Andryzhyieuskaya, H. Bakker, M. Beems, J. Finders, T. Hollink, J. Mulkens, A. Nachtwein, R. Willekers, P. Engblom, T. Gruner, and Y. Zhang, “Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner,” Proc. SPIE 7973, 79731G (2011).
[CrossRef]

T. Fühner, P. Evanschitzky, and A. Erdmann, “Mutual source, mask and projector pupil optimization,” Proc. SPIE 8326, 83260I (2012).
[CrossRef]

P. Evanschitzky, F. Shao, T. Fuhner, and A. Erdmann, “Compensation of mask induced aberrations by projector wavefront control,” Proc. SPIE 7973, 797329 (2011).
[CrossRef]

J. Finders, M. Dusa, P. Nikolsky, Y. van Dommelen, R. Watso, T. Vandeweyer, J. Beckaert, B. Laenens, and L. Van Look, “Litho and patterning challenges for memory and logic applications at the 22 nm node,” Proc. SPIE 7640, 76400C (2010).
[CrossRef]

J. Finders and T. Hollink, “Mask 3D effects: impact on imaging and placement,” Proc. SPIE 7985, 79850I (2011).
[CrossRef]

B. W. Smith, L. V. Zavyalova, and A. Estroff, “Benefiting from polarization effects on high-NA imaging,” Proc. SPIE 5377, 68–79 (2004).
[CrossRef]

M. K. Sears, G. Fenger, J. Mailfert, and B. Smith, “Extending SMO into the lens pupil domain,” Proc. SPIE 7973, 79731B (2011).
[CrossRef]

K. van I. Schenau, H. Bakker, M. Zellenrath, R. Moerman, J. Linders, T. Rohe, and W. Emer, “System qualification and optimization for imaging performance on the 0.80 NA 248 nm step-and-scan systems,” Proc. SPIE 4691, 637–651 (2002).
[CrossRef]

M. Yamana, M. Lamantia, V. Philipsen, S. Wada, T. Nagatomo, and Y. Tonooka, “Comparison of lithographic performance between MoSi binary mask and MoSi attenuated PSM,” Proc. SPIE 7379, 73791L (2009).

G. O. Reynolds, “A concept for a high resolution optical lithographic system for producing one-half micron linewidths,” Proc. SPIE 633, 228–238 (1986).
[CrossRef]

J. E. Gortych and D. M. Williamson, “Effects of higher order aberrations on the process window,” Proc. SPIE 1463, 368–381 (1991).
[CrossRef]

B. W. Smith, “The saga of lambda: spectral influences throughout lithography generations,” Proc. SPIE 8325, 83250Z (2012).
[CrossRef]

K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan, “Implications of triple patterning for 14 nm node design and patterning,” Proc. SPIE 8327, 832703 (2012).
[CrossRef]

T. Castenmiller, F. van de Mast, T. de Kort, C. van de Vin, M. de Wit, R. Stegen, and S. van Cleef, “Towards ultimate optical lithography with NXT:1950i dual stage immersion platform,” Proc. SPIE 7640, 76401N (2010).
[CrossRef]

L. V. Look, B. Kasprowicz, A. Zibold, W. Degel, and G. Vandenberghe, “Image imbalance compensation in alternating phase-shift masks towards the 45 nm node through-pitch imaging,” Proc. SPIE 5992, 59921S (2005).
[CrossRef]

A. Erdmann, “Topography effects and wave aberrations in advanced PSM technology,” Proc. SPIE 4346, 345–355 (2001).
[CrossRef]

M. Kempsell Sears, J. Bekaert, and B. W. Smith, “Pupil wavefront manipulation for optical nanolithography,” Proc. SPIE 8326, 832611 (2012).
[CrossRef]

V. Philipsen, K. Mesuda, P. De Bisschop, A. Erdmann, G. Citarella, P. Evanschitzky, R. Birkner, R. Richter, and T. Scherubl, “Impact of alternative mask stacks on the imaging performance at NA 1.20 and above,” Proc. SPIE 6730, 67301N (2007).
[CrossRef]

S. Tarutani, S. Kamimura, K. Fujii, K. Katou, and Y. Enomoto, “High volume manufacturing capability of negative tone development process,” Proc. SPIE 7972, 79720N (2011).
[CrossRef]

Other (12)

JSR Corporation, “Electronic materials,” http://www.jsr.co.jp/jsr_e/pd/ec_index.shtml .

Fujifilm, “OPD 262: developer without surfactant,” http://www.fujifilmusa.com/products/semiconductor_materials/photoresist-ancillaries/developers/index.html#overview .

KLA-Tencor, “ProDATA advanced CD analysis software—lithography modeling,” http://www.kla-tencor.com/lithography-modeling/pro-data.html .

A. K. Wong and A. R. Neureuther, “Mask topography effects in projection printing of phase-shifting masks,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1994), pp. 895–902.

D. Englebart, “Microelectronics and the art of similitude,” in Solid-State Circuits Conference. Digest of Technical Papers. 1960 IEEE International (IEEE, 1960), Vol. III, pp. 76–77.

M. Kempsell Sears and B. Smith, “Modeling the effects of pupil manipulated spherical aberration in optical nanolithography,” J. Microlithogr. Microfabr. Microsyst., doc. ID 12102, (posted 29 November 2012, in press).

A. Chen, M. Dusa, J. van Schoot, T. Theeuwes, M. Janssen, K. van Ingen Schenau, and H. van der Laan, “Utilization of insitu metrology capability of ASML lithography scanner to improve overall process control,” in Proceedings of IEEE International Symposium on Semiconductor Manufacturing (IEEE, 2006), pp. 356–359.

B. W. Smith, “Optics for photolithography,” in Microlithography: Science and Technology, B. W. Smith and K. Suzuki, eds., 2nd ed. (CRC, 2007), pp. 149–242.

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” in Proceedings of IEEE Transactions on Electron Devices (IEEE, 1982), pp. 1828–1836.

B. W. Smith, “Multi-layered attenuated phase shift mask and a method for making the mask,” U.S. patent 5939227(17August1999).

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation (Society for Industrial and Applied Mathematics, 2005).

S. Luke, “Essentials of metaheuristics,” http://cs.gmu.edu/~sean/book/metaheuristics/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of Köhler illumination. Source is imaged onto the entrance pupil of the objective optics, and the mask is imaged onto the wafer by the objective optics. Numerical aperture of objective lens is defined by NA=sin(θ2).

Fig. 2.
Fig. 2.

Experimental best focus through pitch for a 1% transmitting TaSiON AttPSM has a ΔBF of 64 nm.

Fig. 3.
Fig. 3.

Rigorous photomask pupil phase sensitivity to each Zernike aberration for 1D lines on a 1% TaSiON AttPSM, 1D lines on an AltPSM, and contact holes on a 6% MoSi AttPSM. Highest sensitivities are from spherical aberration (z9, z16, z25, z36, z49, and z64).

Fig. 4.
Fig. 4.

Simulated process windows of contact holes from a 6% MoSi AttPSM both have a UDOF of 115 nm. (a) UDOF metric’s solution z9=0.05 and z16=0 has a ΔBF of 35 nm and (b) ΔBF metric’s solution z9=0.05 and z16=0.12 has a ΔBF of 2 nm.

Fig. 5.
Fig. 5.

Simulated BF of contact holes versus z9 coefficient for (a) 90 nm pitch with z25=0 at multiple z16 coefficients and (b) 120 nm pitch with z16=0.11 at multiple z25 coefficients. Graphs reveal that for a given pitch, the slope of BF versus z9 is independent of z16 and z25 coefficients.

Fig. 6.
Fig. 6.

Best focus versus z9 coefficient through pitch for 1D lines on a 1% transmitting TaSiON AttPSM in (a) simulation and (b) experiment.

Fig. 7.
Fig. 7.

Experimental process windows for 45 nm lines through pitch on a 1% TaSiON AttPSM with (a) no applied wavefront have a 59 nm UDOF and (b) z9=+0.02 and z16=+0.06 offsets have a 108 nm UDOF.

Fig. 8.
Fig. 8.

Best focus versus z9 coefficient through pitch for contact holes on a 6% MoSi AttPSM in (a) simulation and (b) experiment

Fig. 9.
Fig. 9.

Experimental process windows for contact holes through pitch on a 6% MoSi AttPSM with (a) no applied wavefront have a 92 nm UDOF and (b) z9=0.01 and z16=0.1 offsets have a 109 nm UDOF.

Fig. 10.
Fig. 10.

Experimental process windows for 50 nm line with 125 nm pitch on an AltPSM with (a) no applied wavefront has a 48 nm UDOF and (b) z9=0.09 offset has a 97 nm UDOF and (c) z9=0.08 and z16=+0.1 offsets has a 132 nm UDOF.

Fig. 11.
Fig. 11.

Experimental process windows for 50 nm line with 150 nm pitch on an AltPSM with (a) no applied wavefront has a 0 nm UDOF, (b) z9=0.09 offset has a 83 nm UDOF, and (c) z9=0.08 and z16=+0.1 offsets has a 141 nm UDOF.

Tables (1)

Tables Icon

Table 1. Mask Stack Parameters for Rigorous Simulations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A(x)=F1{M(r)P(r)ei2πλW(r,θ)}
Wspherical(r,θ)=z9(16r2+6r4)+z16(1+12r230r4+20r6)

Metrics