Abstract

The parameters of the semiconductor laser source are vital for the performances of optical coherent systems. In this paper, a novel method to measure the phase-shift φm between laser central optical-frequency modulation (COFM) and the accompanied optical-intensity modulation (AOIM) is proposed, which is easy to realize and requires no further fiber etalons or high-speed demodulators. An orthogonal test is utilized to measure φm. Experimental results show that the value of φm approaches 1.09π under different COFM conditions. Then the interference model of phase-generated carrier (PGC) demodulation is modified by taking into account the effect of φm, and the influences of φm on the demodulation results using two methods (look-up table and AOIM-factor division) are further analyzed in detail.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription