Abstract

A reliable method, combining femtosecond (fs) laser mitigation and chemical (HF) etching, has been developed to mitigate laser-damage growth sites on a fused silica surface. A rectangular mitigation site was fabricated by an fs laser with a raster scan procedure; HF etching was then used to remove the redeposition material. The results show that the mitigation site exhibits good physical qualities with a smooth bottom and edge. The damage test results show that the growth threshold of the mitigation sites increases. Furthermore, the structural characteristic of samples was measured by a photoluminescence (PL) spectrometer, and the light intensification caused by damage and mitigation sites was numerically modeled by the finite-difference time-domain (FDTD). It revealed that the removal of damaged material and structure optimization contribute to the increase of the damage growth threshold of the mitigation site.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010).
    [CrossRef]
  2. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
    [CrossRef]
  3. M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
    [CrossRef]
  4. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
    [CrossRef]
  5. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
    [CrossRef]
  6. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
    [CrossRef]
  7. L. Gallais, P. Cormont, and J. L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17, 23488–23501 (2009).
    [CrossRef]
  8. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
    [CrossRef]
  9. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Appl. Opt. 45, 5358–5367 (2006).
    [CrossRef]
  10. P. Cormont, L. Gallais, L. Lamaignere, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express 18, 26068–26076 (2010).
    [CrossRef]
  11. S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
    [CrossRef]
  12. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49, 2606–2616 (2010).
    [CrossRef]
  13. A. M. T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008).
    [CrossRef]
  14. M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
    [CrossRef]
  15. B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A 95, 537–545 (2009).
    [CrossRef]
  16. X. Liu, D. Du, and G. Mourous, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  17. J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
    [CrossRef]
  18. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
    [CrossRef]
  19. Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
    [CrossRef]
  20. G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
    [CrossRef]
  21. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
    [CrossRef]
  22. R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981).
    [CrossRef]
  23. L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
    [CrossRef]
  24. S. Chengwei, Laser Radiation Effect (Books, National Defense Industry, 2002).
  25. Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
    [CrossRef]
  26. H. Hosono, H. Kawazoe, and N. Matsunami, “Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation,” Phys. Rev. Lett. 80, 317–320 (1998).
    [CrossRef]
  27. L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
    [CrossRef]
  28. M. A. Stevens-Kalceff, “Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs,” Phys. Rev. Lett. 84, 3137–3140 (2000).
    [CrossRef]

2013 (2)

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
[CrossRef]

2011 (3)

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” Appl. Opt. 50, C457–C462 (2011).
[CrossRef]

G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

2010 (4)

2009 (4)

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

L. Gallais, P. Cormont, and J. L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express 17, 23488–23501 (2009).
[CrossRef]

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A 95, 537–545 (2009).
[CrossRef]

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

2008 (2)

A. M. T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

2007 (1)

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

2006 (1)

2005 (1)

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

2002 (1)

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

2001 (2)

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

2000 (1)

M. A. Stevens-Kalceff, “Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs,” Phys. Rev. Lett. 84, 3137–3140 (2000).
[CrossRef]

1998 (3)

H. Hosono, H. Kawazoe, and N. Matsunami, “Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation,” Phys. Rev. Lett. 80, 317–320 (1998).
[CrossRef]

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

1997 (1)

X. Liu, D. Du, and G. Mourous, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

1981 (1)

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981).
[CrossRef]

Adams, J. J.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

Baker, H. J.

Bass, I. L.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Britten, J. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Brusasco, R. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Butler, J. A.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Carius, R.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981).
[CrossRef]

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

Chen, S. L.

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

Chen, W. X.

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

Chengwei, S.

S. Chengwei, Laser Radiation Effect (Books, National Defense Industry, 2002).

Combis, P.

Commandre, M.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Cooke, D.

Cormont, P.

Courchinoux, R.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Cross, D. A.

Dalili, A.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A 95, 537–545 (2009).
[CrossRef]

Demos, S. G.

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Donohue, E. E.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Draggoo, V. G.

Du, D.

X. Liu, D. Du, and G. Mourous, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Elhadj, S.

Fang, Z.

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
[CrossRef]

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Fischer, R.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981).
[CrossRef]

Gallais, L.

Guss, G. M.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49, 2606–2616 (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Hackel, R. P.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

Hall, D. R.

He, H. B.

Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
[CrossRef]

Hebert, D.

Hollingsworth, W. G.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

Holzenkampfer, E.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981).
[CrossRef]

Hosono, H.

H. Hosono, H. Kawazoe, and N. Matsunami, “Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation,” Phys. Rev. Lett. 80, 317–320 (1998).
[CrossRef]

Hrubesh, L. W.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Hu, G. H.

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
[CrossRef]

Jarboe, J. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

Kawazoe, H.

H. Hosono, H. Kawazoe, and N. Matsunami, “Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation,” Phys. Rev. Lett. 80, 317–320 (1998).
[CrossRef]

Kozlowski, M. R.

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Lamaignere, L.

P. Cormont, L. Gallais, L. Lamaignere, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express 18, 26068–26076 (2010).
[CrossRef]

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Legros, P.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Li, D. W.

Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
[CrossRef]

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

Lindsey, E. F.

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Liu, W. W.

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

Liu, X.

X. Liu, D. Du, and G. Mourous, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Liu, X. F.

G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
[CrossRef]

Martinez, C.

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Matsunami, N.

H. Hosono, H. Kawazoe, and N. Matsunami, “Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation,” Phys. Rev. Lett. 80, 317–320 (1998).
[CrossRef]

Matthews, M. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49, 2606–2616 (2010).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Mendez, E.

Milam, D.

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Molander, W. A.

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Molian, P. A.

A. M. T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008).
[CrossRef]

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Mourous, G.

X. Liu, D. Du, and G. Mourous, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Neeb, K. P.

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Negres, R. A.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express 18, 19966–19976 (2010).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Nostrand, M. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

Nowak, K. M.

Ozkan, A.

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Palmier, S.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Penetrante, B. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

Qi, H. J.

Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
[CrossRef]

Qiu, R.

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Qiu, S. R.

Ravizza, F. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Rubenchik, A. M.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Rullier, J. L.

Sell, W. D.

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Shakoor, M.

A. M. T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008).
[CrossRef]

Shao, J. D.

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
[CrossRef]

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Shirk, M. D.

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

Skuja, L.

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

Spaeth, M. L.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

Staggs, M. C.

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Stevens-Kalceff, M. A.

M. A. Stevens-Kalceff, “Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs,” Phys. Rev. Lett. 84, 3137–3140 (2000).
[CrossRef]

Stolz, C.

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Stolz, C. J.

Stuke, J.

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981).
[CrossRef]

Summers, L. J.

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Tan, B.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A 95, 537–545 (2009).
[CrossRef]

Thomas, M.

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Venkatakrishnan, K.

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A 95, 537–545 (2009).
[CrossRef]

Villarreal, F. J.

Wagner, A. M. T.

A. M. T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008).
[CrossRef]

Wegner, P.

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Wegner, P. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt. 49, 2606–2616 (2010).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Widmayer, C. C.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

Wolfe, J.

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Wolfe, J. E.

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

Wu, Z. L.

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

Yang, S. T.

Yi, K.

G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
[CrossRef]

Yu, Z. K.

Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
[CrossRef]

Zhao, Y. A.

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. A (1)

B. Tan, A. Dalili, and K. Venkatakrishnan, “High repetition rate femtosecond laser nano-machining of thin films,” Appl. Phys. A 95, 537–545 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci. 255, 5532–5536 (2009).
[CrossRef]

Chin. J. Lasers (1)

Z. Fang, Y. A. Zhao, S. L. Chen, G. H. Hu, W. W. Liu, W. X. Chen, D. W. Li, and J. D. Shao, “Mitigation of ultraviolet laser damage on fused silica surfaces with femtosecond laser system,” Chin. J. Lasers 40, 0403001 (2013) (in Chinese).
[CrossRef]

Chin. Phys. Lett. (1)

Z. K. Yu, H. B. He, H. J. Qi, Z. Fang, and D. W. Li, “Characteristics of 355 nm laser damage in bulk materials,” Chin. Phys. Lett. 30, 067801 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, and G. Mourous, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94, 416–428 (2011).
[CrossRef]

J. Appl. Phys. (1)

R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, “Photoluminescence in the amorphous system SiOx,” J. Appl. Phys. 52, 4241–4243 (1981).
[CrossRef]

J. Laser Appl. (2)

A. M. T. Wagner, M. Shakoor, and P. A. Molian, “Review of laser nanomachining,” J. Laser Appl. 20, 169–184 (2008).
[CrossRef]

M. D. Shirk and P. A. Molian, “A review of ultrashort pulsed laser ablation of materials,” J. Laser Appl. 10, 18–28 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

L. Skuja, “Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,” J. Non-Cryst. Solids 239, 16–48 (1998).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (2)

M. A. Stevens-Kalceff, “Electron-irradiation-induced radiolytic oxygen generation and microsegregation in silicon dioxide polymorphs,” Phys. Rev. Lett. 84, 3137–3140 (2000).
[CrossRef]

H. Hosono, H. Kawazoe, and N. Matsunami, “Experimental evidence for Frenkel defect formation in amorphous SiO2 by electronic excitation,” Phys. Rev. Lett. 80, 317–320 (1998).
[CrossRef]

Proc. SPIE (9)

G. H. Hu, K. Yi, X. F. Liu, Y. A. Zhao, and J. D. Shao, “Growth mechanism of laser-induced damage in fused silica,” Proc. SPIE 8190, 819020 (2011).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE 6720, 67200H (2008).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. L. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE 4347, 468 (2001).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE 7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, 67200A (2007).
[CrossRef]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, 59910C (2005).
[CrossRef]

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubesh, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[CrossRef]

J. Wolfe, R. Qiu, C. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

L. W. Hrubesh, M. A. Norton, W. A. Molander, P. J. Wegner, M. C. Staggs, S. G. Demos, J. A. Britten, L. J. Summers, E. F. Lindsey, and M. R. Kozlowski, “Chemical etch effects on laser-induced surface damage growth in fused silica,” Proc. SPIE 4347, 553–559 (2001).
[CrossRef]

Other (1)

S. Chengwei, Laser Radiation Effect (Books, National Defense Industry, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic of nanosecond laser-damage test facility.

Fig. 2.
Fig. 2.

Schematic of fs laser mitigation bench.

Fig. 3.
Fig. 3.

Schematic of raster scan procedure.

Fig. 4.
Fig. 4.

SEM images and horizontal depth profile of damage site induced by one shot with peak fluences 45.4J/cm2. (a) The whole damage site. (b) The molten region of the damage site. (c) The fractured region at the edge of the damage site. (d) The horizontal depth profile of the damage site.

Fig. 5.
Fig. 5.

(a1) SEM image of fs laser mitigation site. (a2) Amplified image. (a3) FIB cross-sectional image below the fs laser mitigation site shown in Fig. 5(a1). The SEM images of mitigation site [(b1) and (b2)] treated with fs laser mitigation and HF etching. (b3) Vertical cross-sectional depth profile of mitigation site shown in (b1).

Fig. 6.
Fig. 6.

Results of damage-growth threshold of damage and mitigation sites.

Fig. 7.
Fig. 7.

Morphology of a mitigation site after laser-damage growth test.

Fig. 8.
Fig. 8.

Normalized PL spectra of the damage site and fs laser mitigation site. The 351 nm excitation laser is focused on the center of the damage site and the fs laser mitigation site.

Fig. 9.
Fig. 9.

Calculation model of damage and mitigation sites. The different depth d and periodic spacing l of the zigzag structure are used to model the bottom of the mitigation site and damage site.

Fig. 10.
Fig. 10.

Electric field distribution around the sites with different depths d of the zigzag structure. The lateral size L, depth D of the site, and the periodic spacing l of the zigzag structure are fixed to 48, 5, and 8 μm. The depths d of the zigzag structure are (a) 3 μm; (b) 1 μm; (c) 0.5 μm; (d) 0 μm, respectively. The locations of the peak electric field are marked with a black ring.

Fig. 11.
Fig. 11.

Dependencies of normalized peak EFA on the periodic spacing l and depth d of the zigzag structure. The lateral size L and depth D of the site are fixed to 48 and 5 μm.

Fig. 12.
Fig. 12.

Dependencies of normalized peak EFA on the lateral size L of the site. The depth D of the site and the periodic spacing l of the zigzag structure are fixed to 5 and 4 μm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρcTt=(kT)+α(hv)dIdteα(hv)x,
Tmax2α(hv)Ikπρct.
SiOSiSiSi+Oint(PORsandO2),
SiOSinhυSiO+Si.

Metrics