Abstract

We present experimental realization and validation of the six-port design of integrating sphere photometers for total luminous flux measurement, which significantly improves the uniformity of spatial response compared to the conventional single-port design. Construction, measurement procedure, and data acquisition of the realized instrument with a radius of 1 m are described. Measurement of the spatial response distribution function confirms the expected effect of improving the uniformity by averaging the signals from the six detection ports. The related spatial mismatch error is determined to be less than 1.4% for all the realistic cases of beam angles and directions of a test lamp mounted in the vicinity of the sphere center. As a result, we confirm that the realized six-port instrument allows us to eliminate the complicated spatial mismatch correction procedure by adding a relative standard uncertainty of only 1.4/3%0.81%, which offers a great practical benefit for testing solid-state lighting products of various beam characteristics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription