Abstract

We present experimental realization and validation of the six-port design of integrating sphere photometers for total luminous flux measurement, which significantly improves the uniformity of spatial response compared to the conventional single-port design. Construction, measurement procedure, and data acquisition of the realized instrument with a radius of 1 m are described. Measurement of the spatial response distribution function confirms the expected effect of improving the uniformity by averaging the signals from the six detection ports. The related spatial mismatch error is determined to be less than 1.4% for all the realistic cases of beam angles and directions of a test lamp mounted in the vicinity of the sphere center. As a result, we confirm that the realized six-port instrument allows us to eliminate the complicated spatial mismatch correction procedure by adding a relative standard uncertainty of only 1.4/3%0.81%, which offers a great practical benefit for testing solid-state lighting products of various beam characteristics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Commision Internationale de l’Éclairage, “The measurement of luminous flux,” (CIE, 1989).
  2. Y. Ohno, “Photometric standards,” in Handbook of Applied Photometry, C. DeCusatis, ed. (Springer-Verlag, 1998), pp. 159–173.
  3. Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
    [CrossRef]
  4. S. Park, S.-N. Park, and D.-H. Lee, “Six-port integrating sphere photometer with uniform spatial response,” Appl. Opt. 50, 2220–2227 (2011).
    [CrossRef]
  5. Y. Ohno, “Detector-based luminous-flux calibration using the absolute integrating-sphere method,” Metrologia 35, 473–478 (1998).
    [CrossRef]
  6. K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
    [CrossRef]
  7. S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
    [CrossRef]
  8. Y. Ohno, “Integrating sphere simulation: application to total flux scale realization,” Appl. Opt. 33, 2637–2647 (1994).
    [CrossRef]

2012 (1)

Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
[CrossRef]

2011 (1)

2009 (1)

S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
[CrossRef]

2000 (1)

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

1998 (1)

Y. Ohno, “Detector-based luminous-flux calibration using the absolute integrating-sphere method,” Metrologia 35, 473–478 (1998).
[CrossRef]

1994 (1)

Anokhin, M.

S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
[CrossRef]

Binder, U.

S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
[CrossRef]

Hovila, J.

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

Ikonen, E.

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

Jeon, M.-Y.

Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
[CrossRef]

Jordan, W.

S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
[CrossRef]

Kim, Y.-W.

Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
[CrossRef]

Lahti, K.

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

Lee, D.-H.

Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
[CrossRef]

S. Park, S.-N. Park, and D.-H. Lee, “Six-port integrating sphere photometer with uniform spatial response,” Appl. Opt. 50, 2220–2227 (2011).
[CrossRef]

Lindermann, M.

S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
[CrossRef]

Ohno, Y.

Y. Ohno, “Detector-based luminous-flux calibration using the absolute integrating-sphere method,” Metrologia 35, 473–478 (1998).
[CrossRef]

Y. Ohno, “Integrating sphere simulation: application to total flux scale realization,” Appl. Opt. 33, 2637–2647 (1994).
[CrossRef]

Y. Ohno, “Photometric standards,” in Handbook of Applied Photometry, C. DeCusatis, ed. (Springer-Verlag, 1998), pp. 159–173.

Park, S.

Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
[CrossRef]

S. Park, S.-N. Park, and D.-H. Lee, “Six-port integrating sphere photometer with uniform spatial response,” Appl. Opt. 50, 2220–2227 (2011).
[CrossRef]

Park, S.-N.

Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
[CrossRef]

S. Park, S.-N. Park, and D.-H. Lee, “Six-port integrating sphere photometer with uniform spatial response,” Appl. Opt. 50, 2220–2227 (2011).
[CrossRef]

Tittonen, I.

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

Toivanen, P.

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

Vahala, E.

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

Winter, S.

S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
[CrossRef]

Appl. Opt. (2)

Metrologia (4)

Y.-W. Kim, D.-H. Lee, S.-N. Park, M.-Y. Jeon, and S. Park, “Realization and validation of the detector-based absolute integrating sphere method for luminous-flux measurement at KRISS,” Metrologia 49, 273–282 (2012).
[CrossRef]

Y. Ohno, “Detector-based luminous-flux calibration using the absolute integrating-sphere method,” Metrologia 35, 473–478 (1998).
[CrossRef]

K. Lahti, J. Hovila, P. Toivanen, E. Vahala, I. Tittonen, and E. Ikonen, “Realization of the luminous-flux unit using an LED scanner for the absolute integrating-sphere method,” Metrologia 37, 595–598 (2000).
[CrossRef]

S. Winter, M. Lindermann, W. Jordan, U. Binder, and M. Anokhin, “Convenient integrating sphere scanner for accurate luminous flux measurements,” Metrologia 46, S248–S251 (2009).
[CrossRef]

Other (2)

Commision Internationale de l’Éclairage, “The measurement of luminous flux,” (CIE, 1989).

Y. Ohno, “Photometric standards,” in Handbook of Applied Photometry, C. DeCusatis, ed. (Springer-Verlag, 1998), pp. 159–173.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Construction geometry of the realized six-port integrating sphere PM. Pn and Bn denote each detection port and baffle, respectively, (n=16). The radius of the sphere is R=1m, the distance of each baffle from the sphere center D=670mm, the radius of each baffle Rb=100mm, and the radius of each detection port Rw=25mm.

Fig. 2.
Fig. 2.

Data acquisition schematic of the realized six-port integrating sphere PM. P1 to P6 represent the six detection ports shown in Fig. 1, and PD1 to PD6 are the photodiodes mounted on each port. OPD, PM, and FB denote an opal glass diffuser, a PM, and an input optic of a spectroradiometer, respectively. Note that PD6, PM, and FB are mounted on a translator (TR), which brings a selected device to the port P6.

Fig. 3.
Fig. 3.

Normalized SRDF of the realized six-port integrating sphere PM measured for each detection port: (a) K1*, (b) K2*, (c) K3*, (d) K4*, (e) K5*, and (f) K6*. The dashed lines indicate the paths for plotting the SRDF values in Fig. 4

Fig. 4.
Fig. 4.

Normalized SRDF of the realized six-port integrating sphere PM measured along a path passing through each detection port: (a) plot of K1*, K2*, and K3*; (b) plot of K4*, K5*, and K6*.

Fig. 5.
Fig. 5.

(a) Normalized SRDF of the realized six-port integrating sphere PM obtained by averaging the measured signals of the six detection ports and (b) normalized SRDF of a one-port integrating sphere PM with the same dimensions as the six-port device. The dashed lines designated as A, B, and C indicate the paths for plotting the SRDF values in Fig. 6: Path A and path C are the circular trajectories on the yz plane of the six-port sphere and the one-port sphere, respectively. Path B is obtained by rotating path A by 30° around the z axis.

Fig. 6.
Fig. 6.

Normalized SRDF measured along the selected paths A and B for the six-port integrating sphere PM and path C for the one-port comparison device, as shown in Fig. 5.

Fig. 7.
Fig. 7.

Spatial mismatch correction factor (SCF) calculated from the measured SRDF for five different DUT lamps with beam angles of 120°, 90°, 59°, 39°, and 17° as a function of beam direction. (a) SCF of the realized six-port instrument with a beam direction along path A in Fig. 5(a), (b) SCF of the realized six-port instrument along path B in Fig. 5(a), and (c) SCF of the one-port instrument along path C in Fig. 5(b).

Fig. 8.
Fig. 8.

Lamp position dependence of SRDF and SCF of the realized six-port integrating sphere PM. (a)–(c) Difference of the measured SRDF for a lamp at (a) z=8cm, (b) z=4cm, and (c) z=+4cm from the SRDF measured at the center (z=0); (d)–(h) SCF plot along path A in Fig. 5(a) at different lamp positions for a beam angle of (d) 120°, (e) 90°, (f) 59°, (g) 39°, and (h) 17°.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

y=(i=16yi6y6)yp.
y(λ)=(i=16yi6y6)ys(λ).
ΦDUT=(i=16yi,DUT6y6,DUT)(6y6,REFi=16yi,REF)yp,DUTyp,REFΦREF,
ΦDUT=(i=16yi,DUT6y6,DUT)yp,DUTyp,REFΦREF.
ΦDUT=kacfkccfkscf(i=16yi,DUT6y6,DUT)yp,DUTyp,REFΦREF.
Ki(θ,ϕ)=yi(θ,ϕ)ΦscanEiΦscan.
Ki*(θ,ϕ)=4πKi(θ,ϕ)ϕ=02πθ=0πKi(θ,ϕ)sinθdθdϕ.
Kavg=i=16yi(θ,ϕ)Φscan,
Kavg*(θ,ϕ)=4πKavg(θ,ϕ)ϕ=02πθ=0πKavg(θ,ϕ)sinθdθdϕ.
kscf=1ϕ=02πθ=0πI*(θ,ϕ)K*(θ,ϕ)sinθdθdϕ.
ϕ=02πθ=0πI*(θ,ϕ)sinθdθdϕ=1,ϕ=02πθ=0πK*(θ,ϕ)sinθdθdϕ=4π.

Metrics