Abstract

A comparison has been done between the two cases when intraband effects are included and when they are excluded in the semiconductor optical amplifier model for propagating short pulses. The numerical investigation shows that the dependence of output pulse chirping and broadening on the amplifier gain, input pulse energy, and input pulsewidth becomes stronger on inclusion of intraband effects. To prove the experimental fact of pulsewidth dependency of the amplifier saturated gain for short pulses, it is compulsory to include intraband effects in the model. We prescribe here an expression for the saturation energy as a function of pulsewidth that correctly predicts the variation obtained numerically.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
    [CrossRef]
  2. K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
    [CrossRef]
  3. J. Mørk, J. Mark, and C. P. Seltzer, “Carrier heating in InGaAsP laser amplifiers due to two-photon absorption,” Appl. Phys. Lett. 64, 2206–2208 (1994).
    [CrossRef]
  4. A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
    [CrossRef]
  5. N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. II. Theory,” Jpn. J. Appl. Phys. 27, 615–626 (1988).
    [CrossRef]
  6. G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [CrossRef]
  7. T. Saitoh and T. Mukai, “Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification,” IEEE J. Quantum Electron. 26, 2086–2094 (1990).
    [CrossRef]
  8. A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
    [CrossRef]
  9. P. Runge, R. Elschner, and K. Petermann, “Chromatic dispersion in InGaAsP semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 644–649 (2010).
    [CrossRef]
  10. L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
    [CrossRef]
  11. K. Hussain, S. K. Varshney, and P. K. Datta, “Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier,” Pramana J. Phys. 75, 1011–1016 (2010).
    [CrossRef]
  12. A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
    [CrossRef]
  13. P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
    [CrossRef]
  14. Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990).
    [CrossRef]
  15. A. E. Siegman, Lasers (University Science, 1986).
  16. M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
    [CrossRef]

2010 (2)

P. Runge, R. Elschner, and K. Petermann, “Chromatic dispersion in InGaAsP semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 644–649 (2010).
[CrossRef]

K. Hussain, S. K. Varshney, and P. K. Datta, “Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier,” Pramana J. Phys. 75, 1011–1016 (2010).
[CrossRef]

2002 (1)

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

1999 (1)

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

1997 (2)

A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

1994 (3)

K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[CrossRef]

J. Mørk, J. Mark, and C. P. Seltzer, “Carrier heating in InGaAsP laser amplifiers due to two-photon absorption,” Appl. Phys. Lett. 64, 2206–2208 (1994).
[CrossRef]

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

1992 (1)

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

1991 (1)

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

1990 (2)

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990).
[CrossRef]

T. Saitoh and T. Mukai, “Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification,” IEEE J. Quantum Electron. 26, 2086–2094 (1990).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

1988 (1)

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. II. Theory,” Jpn. J. Appl. Phys. 27, 615–626 (1988).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Borri, P.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Darwish, A.

K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[CrossRef]

Datta, P. K.

K. Hussain, S. K. Varshney, and P. K. Datta, “Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier,” Pramana J. Phys. 75, 1011–1016 (2010).
[CrossRef]

Eckner, J.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

Eisentein, G.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990).
[CrossRef]

Elschner, R.

P. Runge, R. Elschner, and K. Petermann, “Chromatic dispersion in InGaAsP semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 644–649 (2010).
[CrossRef]

Guekos, G.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

Hall, K.

K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[CrossRef]

Hall, K. L.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990).
[CrossRef]

Hussain, K.

K. Hussain, S. K. Varshney, and P. K. Datta, “Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier,” Pramana J. Phys. 75, 1011–1016 (2010).
[CrossRef]

Hvam, J. M.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Ippen, E.

K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[CrossRef]

Ippen, E. P.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990).
[CrossRef]

Ito, R.

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. II. Theory,” Jpn. J. Appl. Phys. 27, 615–626 (1988).
[CrossRef]

Ito, Y.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

Jauho, A.-P.

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

Kawaguchi, H.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

Lai, Y.

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990).
[CrossRef]

Langbein, W.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Lenz, G.

K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[CrossRef]

Mark, J.

J. Mørk, J. Mark, and C. P. Seltzer, “Carrier heating in InGaAsP laser amplifiers due to two-photon absorption,” Appl. Phys. Lett. 64, 2206–2208 (1994).
[CrossRef]

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

Martelli, F.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Mecozzi, A.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

Mørk, J.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation induced by picosecond pulses in semiconductor optical amplifiers,” J. Opt. Soc. Am. B 14, 761–770 (1997).
[CrossRef]

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

J. Mørk, J. Mark, and C. P. Seltzer, “Carrier heating in InGaAsP laser amplifiers due to two-photon absorption,” Appl. Phys. Lett. 64, 2206–2208 (1994).
[CrossRef]

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

Mukai, T.

T. Saitoh and T. Mukai, “Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification,” IEEE J. Quantum Electron. 26, 2086–2094 (1990).
[CrossRef]

Occhi, L.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

Ogasawara, N.

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. II. Theory,” Jpn. J. Appl. Phys. 27, 615–626 (1988).
[CrossRef]

Olesen, H.

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Petermann, K.

P. Runge, R. Elschner, and K. Petermann, “Chromatic dispersion in InGaAsP semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 644–649 (2010).
[CrossRef]

Runge, P.

P. Runge, R. Elschner, and K. Petermann, “Chromatic dispersion in InGaAsP semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 644–649 (2010).
[CrossRef]

Saitoh, T.

T. Saitoh and T. Mukai, “Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification,” IEEE J. Quantum Electron. 26, 2086–2094 (1990).
[CrossRef]

Scaffetti, S.

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Schares, L.

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

Seltzer, C. P.

J. Mørk, J. Mark, and C. P. Seltzer, “Carrier heating in InGaAsP laser amplifiers due to two-photon absorption,” Appl. Phys. Lett. 64, 2206–2208 (1994).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Tromborg, B.

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

Uskov, A.

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

Varshney, S. K.

K. Hussain, S. K. Varshney, and P. K. Datta, “Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier,” Pramana J. Phys. 75, 1011–1016 (2010).
[CrossRef]

Willatzen, M.

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

Appl. Phys. Lett. (2)

J. Mark and J. Mørk, “Subpicosecond gain dynamics in InGaAsP optical amplifiers: experiment and theory,” Appl. Phys. Lett. 61, 2281–2283 (1992).
[CrossRef]

J. Mørk, J. Mark, and C. P. Seltzer, “Carrier heating in InGaAsP laser amplifiers due to two-photon absorption,” Appl. Phys. Lett. 64, 2206–2208 (1994).
[CrossRef]

IEEE J. Quantum Electron. (5)

A. Uskov, J. Mørk, and J. Mark, “Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning,” IEEE J. Quantum Electron. 30, 1769–1781 (1994).
[CrossRef]

G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

T. Saitoh and T. Mukai, “Gain saturation characteristics of traveling-wave semiconductor laser amplifiers in short optical pulse amplification,” IEEE J. Quantum Electron. 26, 2086–2094 (1990).
[CrossRef]

P. Runge, R. Elschner, and K. Petermann, “Chromatic dispersion in InGaAsP semiconductor optical amplifiers,” IEEE J. Quantum Electron. 46, 644–649 (2010).
[CrossRef]

L. Occhi, Y. Ito, H. Kawaguchi, L. Schares, J. Eckner, and G. Guekos, “Intraband gain dynamics in bulk semiconductor optical amplifiers: measurements and simulations,” IEEE J. Quantum Electron. 38, 54–60 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mecozzi and J. Mørk, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1190–1207 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Lai, K. L. Hall, E. P. Ippen, and G. Eisentein, “Short pulse gain saturation in InGaAsP diode laser amplifiers,” IEEE Photon. Technol. Lett. 2, 711–713 (1990).
[CrossRef]

M. Willatzen, A. Uskov, J. Mørk, H. Olesen, B. Tromborg, and A.-P. Jauho, “Nonlinear gain suppression in semiconductor lasers due to carrier heating,” IEEE Photon. Technol. Lett. 3, 606–609 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

N. Ogasawara and R. Ito, “Longitudinal mode competition and asymmetric gain saturation in semiconductor injection lasers. II. Theory,” Jpn. J. Appl. Phys. 27, 615–626 (1988).
[CrossRef]

Opt. Commun. (2)

K. Hall, G. Lenz, A. Darwish, and E. Ippen, “Subpicosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
[CrossRef]

P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. Martelli, “Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers,” Opt. Commun. 164, 51–55 (1999).
[CrossRef]

Pramana J. Phys. (1)

K. Hussain, S. K. Varshney, and P. K. Datta, “Intraband effects on ultrafast pulse propagation in semiconductor optical amplifier,” Pramana J. Phys. 75, 1011–1016 (2010).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Variation of normalized output (a) pulse shape, (b) pulse spectrum, and (c) chirp for unsaturated gains of 10, 20, and 30 dB, respectively, for the case when intraband phenomena are neglected (i.e., ϵ=0). In (d), (e), and (f), the same is shown for the case ϵ0. All the figures are plotted for Ein=0.1ES and τp=5ps.

Fig. 2.
Fig. 2.

Plots of (a) normalized output pulsewidth, (b) positive chirp peak, and (c) negative chirp peak as a function of device unsaturated gain for both the cases, ϵ0 and ϵ=0. Ein=0.1ES and τp=5ps.

Fig. 3.
Fig. 3.

Plots of (a) normalized output pulsewidth, (b) positive chirp peak, and (c) negative chirp peak as a function of input energy for both the cases ϵ0 and ϵ=0. G0=35dB and τp=5ps.

Fig. 4.
Fig. 4.

Plots of (a) normalized output pulsewidth, (b) positive chirp peak, and (c) negative chirp peak as a function of input pulsewidth for both the cases, ϵ0 and ϵ=0. Ein=0.1ES and G0=35dB.

Fig. 5.
Fig. 5.

(a) shows saturated gain G as a function of input energy Ein. The value of the unsaturated gain is G0=35dB. The horizontal dashed line corresponds to the 3 dB gain saturation. (b) shows the 3 dB input saturation energy Esat,3dB as a function of pulsewidth τp for both the cases ϵ0 and ϵ=0. The dashed curves show the fitting obtained by using Eq. (8).

Fig. 6.
Fig. 6.

(a) shows saturated gain as a function of Ein/ES. The solid curves correspond to energy gain saturation and the dashed curve corresponds to cw gain saturation. For the latter case, the abscissa represents Pin/PS. (b) shows the ratio κ as a function of unsaturated gain G0.

Fig. 7.
Fig. 7.

Plots of (a) normalized output pulsewidth, (b) positive chirp peak, and (c) negative chirp peak as a function of ϵSHB for ϵCHa=1.5×1023m3 and ϵCHb=3.0×1023m3. G0=35dB, τp=2.5ps and Ein=0.1ES.

Fig. 8.
Fig. 8.

Plots of (a) normalized output pulsewidth, (b) positive chirp peak, and (c) negative chirp peak as a function of ϵCH for ϵSHBa=0.75×1023m3 and ϵSHBb=1.5×1023m3. G0=35dB, τp=2.5ps, and Ein=0.1ES.

Tables (1)

Tables Icon

Table 1. SOA Material and Geometrical Parameters [10]

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

dhNdt=hNτs1SSτs[G(t)1]S(t)+g0τs,
dhSHBdt=hSHBτSHBϵSHBτSHB[G(t)1]S(t)dhCHdtdhNdt,
dhCHdt=hCHτCHϵCHτCH[G(t)1]S(t),
hj(t)=0Lgj(t,z)dz,
Sout(t)=Sin(t)egm(t),
Pout(t)=ωAeffvgSout(t),
ϕout(t)=12αN[hNg0]12αCHhCH,
Δν=12πϕoutt.
Eout(t)=Pin(t)e12gm(t)+iϕout(t)
Esat,3dB=Ein,3dB1+τcrτp,
Gpulse=ln(G0/Gf)Ein/ES+1.
Gf=G0G0(G01)exp[Ein/ES].
Gcw=G0exp[(Gcw1)PinPS],
Ein,3dB=κ2ln2G02ES.

Metrics