Abstract

Polarization-induced fluorescence modulation behavior of a self-assembled coordination cage-shaped complex was investigated using femtosecond laser pulses. The variations of the total two-photon-induced fluorescence (TPF) intensity were found to be strongly modulated by different polarized incident lights and tightly dependent on the linearly polarized component of the excited light. The polarization-induced modulation efficiency of the TPF underwent intensity-dependent decrease, which could be attributed to the two-photon-induced excited-state absorption. The nonlinear absorption behavior of the complex was also studied by performing both femtosecond open aperture Z-scan and nonlinear transmission measurements, which help to better understand the intrinsic optical properties of the molecule and portend its practical applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef]
  2. F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
    [CrossRef]
  3. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
    [CrossRef]
  4. E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  5. V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
    [CrossRef]
  6. J. O. Dowd, W. H. Guo, E. Flood, M. Lynch, A. L. Bradley, L. P. Barry, and J. F. Donegan, “Polarization dependence of a GaAs-based two-photon absorption microcavity photodetector,” Opt. Express 16, 17682–17688 (2008).
    [CrossRef]
  7. R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
    [CrossRef]
  8. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
    [CrossRef]
  9. B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
    [CrossRef]
  10. J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
    [CrossRef]
  11. R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
    [CrossRef]
  12. W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
    [CrossRef]
  13. B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
    [CrossRef]
  14. M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
    [CrossRef]
  15. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
    [CrossRef]
  16. I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
    [CrossRef]
  17. W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
    [CrossRef]
  18. J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
    [CrossRef]
  19. D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
    [CrossRef]
  20. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
    [CrossRef]
  21. Y. Zeng, C. Wang, F. Zhao, X. Huang, and Y. Cheng, “Polarization-induced control of two-photon excited fluorescence in a chiral polybinaphthyl,” Opt. Lett. 36, 2982–2984 (2011).
  22. A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
    [CrossRef]
  23. A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
    [CrossRef]
  24. A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
    [CrossRef]
  25. S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
    [CrossRef]
  26. B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
    [CrossRef]
  27. G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
    [CrossRef]
  28. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
    [CrossRef]
  29. F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
    [CrossRef]
  30. R. L. Sutherland, M. C. Brant, J. Heinrichs, J. E. Rogers, J. E. Slagle, D. G. McLean, and P. A. Fleitz, “Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push–pull charge-transfer chromophores,” J. Opt. Soc. Am. B 22, 1939–1948 (2005).
    [CrossRef]

2012 (4)

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

2011 (3)

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

Y. Zeng, C. Wang, F. Zhao, X. Huang, and Y. Cheng, “Polarization-induced control of two-photon excited fluorescence in a chiral polybinaphthyl,” Opt. Lett. 36, 2982–2984 (2011).

2010 (2)

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

2009 (3)

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

2008 (4)

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

J. O. Dowd, W. H. Guo, E. Flood, M. Lynch, A. L. Bradley, L. P. Barry, and J. F. Donegan, “Polarization dependence of a GaAs-based two-photon absorption microcavity photodetector,” Opt. Express 16, 17682–17688 (2008).
[CrossRef]

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

2007 (2)

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

2005 (2)

2004 (3)

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

2003 (3)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

2002 (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

2001 (1)

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

2000 (1)

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

1999 (1)

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Adams, H.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Allendorf, M.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Andrews, D. L.

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

Baba, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Balu, M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Banerjee, S.

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Barry, L. P.

Belfield, K. D.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Bermejo, M. R.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Bradley, A. L.

Brant, M. C.

Chang, Q.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Chen, J. J.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Chen, K. C.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Chen, X. F.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Chen, X. M.

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

Chen, Z.

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

Cheng, Y.

Clegg, W.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Cox, G. C.

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Cui, Y.

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

Dedov, V. N.

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Dharmaprakash, S. M.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Donegan, J. F.

Dowd, J. O.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Duyne, R. P. V.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Fang, Q. R.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Farha, O. K.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Faust, T. B.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Fernandez-Garcia, M. I.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Fleitz, P. A.

Flood, E.

Fradkin, Z.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Gao, Y. C.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Golan, B.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Gonzalez-Noya, A. M.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Goswami, D.

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Gu, B.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Guo, W. H.

Hagan, D. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Hales, J. M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Harding, L. P.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

He, G. S.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

Heinrichs, J.

Huang, X.

Hupp, J. T.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Ishizawa, N.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Ji, W.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Jia, T.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Jiang, L. W.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Kong, D. G.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Kopnov, G.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Kreno, L. E.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Kuppler, R. J.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Leeder, J. M.

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

Leong, K.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Li, H. J.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Li, J. R.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Lindinger, A.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Liu, Y.

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

Lu, C.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Lynch, M.

Ma, Y. Z.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Makal, T. A.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Maneiro, M.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

McLean, D. G.

Member, S.

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

Meng, F. S.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Mi, J.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Murphy, T. E.

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

Naaman, R.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Nag, A.

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

Novotny, L.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Oron, D.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Patil, P. S.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Pedrido, R.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Plewicki, M.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Prasad, P. N.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Qian, S. X.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Rogers, J. E.

Romero, M. J.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Roufogalis, B. D.

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Russo, L.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Sakakibara, S.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Salem, R.

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

Sanchez, E. J.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Sandhu, A. S.

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Schafer, K. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Slagle, J. E.

Smalyukh, I. I.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Song, Y. L.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Srivastava, A.

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

Stryland, E. W. V.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Sun, Z.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Sutherland, R. L.

Suzuki, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Tan, L.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

Tian, H.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Tidmarsh, I. S.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Timmons, D. J.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Tong, M. L.

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

Turu, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Wang, C.

Wang, H. T.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Wang, Y. X.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Wang, Z.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Ward, M. D.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Weber, S. M.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Weise, F.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Wu, A. H.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Wu, W. Z.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Xie, X. S.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Xu, J.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Xuan, W.

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

Yang, K.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Ye, B. H.

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

Ye, H. A.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Young, M. D.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Yuan, D.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Zaragoza, G.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Zeng, Y.

Zhang, H.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Zhang, M.

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

Zhang, S.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Zhang, X. R.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Zhao, D.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Zhao, F.

Zheng, Q. D.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

Zheng, Y. L.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Zhou, H. C.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Zhu, C.

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

Zhuang, W.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Appl. Phys. B (1)

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Chem. Phys. (1)

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Chem. Rev. (2)

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Chem. Soc. Rev. (1)

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

Coord. Chem. Rev. (2)

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Dalton Trans. (1)

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

J. Am. Chem. Soc. (2)

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

J. Chem. Phys. (4)

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol., A (1)

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

J. Phys. B (1)

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Micron (1)

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Opt. Commun. (2)

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Polymer (1)

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

View of the molecular structure of the coordination complex and the ligand H2L. (purple, Zn; green, Cl; gray, C; red, O; blue, N).

Fig. 2.
Fig. 2.

Linear absorption spectra (left) and SPF spectra (right) of the complex in THF.

Fig. 3.
Fig. 3.

TPF spectra of the complex solution excited by LP and CP light, respectively.

Fig. 4.
Fig. 4.

Normalized TPF intensity of the complex solution as a function of the λ/4 wave plate rotation angle with laser intensity of 10GW/cm2 (black squares), 50GW/cm2 (red circles), and 80GW/cm2 (blue triangles); solid curves are the fitting curves with the function of a+bcos2(2φ+π/2).

Fig. 5.
Fig. 5.

Normalized SPF intensity of the complex solution as a function of the λ/4 wave plate rotation angle.

Fig. 6.
Fig. 6.

OA Z-scan data of the complex in THF at the peak intensity of 30GW/cm2. The solid curve is fitted by TPA theory. The inset shows the nonlinear transmission T(0) versus I00 (balls). The solid line in the inset is just a guide for the eyes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PN[cos2N(φ)+sin2N(φ)]|+E⃗N(t)exp(iω0t)dt|2,
σ2=β/(NAd0×103)(incm4/GW).

Metrics