Abstract

Polarization-induced fluorescence modulation behavior of a self-assembled coordination cage-shaped complex was investigated using femtosecond laser pulses. The variations of the total two-photon-induced fluorescence (TPF) intensity were found to be strongly modulated by different polarized incident lights and tightly dependent on the linearly polarized component of the excited light. The polarization-induced modulation efficiency of the TPF underwent intensity-dependent decrease, which could be attributed to the two-photon-induced excited-state absorption. The nonlinear absorption behavior of the complex was also studied by performing both femtosecond open aperture Z-scan and nonlinear transmission measurements, which help to better understand the intrinsic optical properties of the molecule and portend its practical applications.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
    [CrossRef]
  2. F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
    [CrossRef]
  3. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
    [CrossRef]
  4. E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  5. V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
    [CrossRef]
  6. J. O. Dowd, W. H. Guo, E. Flood, M. Lynch, A. L. Bradley, L. P. Barry, and J. F. Donegan, “Polarization dependence of a GaAs-based two-photon absorption microcavity photodetector,” Opt. Express 16, 17682–17688 (2008).
    [CrossRef]
  7. R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
    [CrossRef]
  8. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
    [CrossRef]
  9. B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
    [CrossRef]
  10. J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
    [CrossRef]
  11. R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
    [CrossRef]
  12. W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
    [CrossRef]
  13. B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
    [CrossRef]
  14. M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
    [CrossRef]
  15. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
    [CrossRef]
  16. I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
    [CrossRef]
  17. W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
    [CrossRef]
  18. J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
    [CrossRef]
  19. D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
    [CrossRef]
  20. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
    [CrossRef]
  21. Y. Zeng, C. Wang, F. Zhao, X. Huang, and Y. Cheng, “Polarization-induced control of two-photon excited fluorescence in a chiral polybinaphthyl,” Opt. Lett. 36, 2982–2984 (2011).
  22. A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
    [CrossRef]
  23. A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
    [CrossRef]
  24. A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
    [CrossRef]
  25. S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
    [CrossRef]
  26. B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
    [CrossRef]
  27. G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
    [CrossRef]
  28. K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
    [CrossRef]
  29. F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
    [CrossRef]
  30. R. L. Sutherland, M. C. Brant, J. Heinrichs, J. E. Rogers, J. E. Slagle, D. G. McLean, and P. A. Fleitz, “Excited-state characterization and effective three-photon absorption model of two-photon-induced excited-state absorption in organic push–pull charge-transfer chromophores,” J. Opt. Soc. Am. B 22, 1939–1948 (2005).
    [CrossRef]

2012

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

2011

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

Y. Zeng, C. Wang, F. Zhao, X. Huang, and Y. Cheng, “Polarization-induced control of two-photon excited fluorescence in a chiral polybinaphthyl,” Opt. Lett. 36, 2982–2984 (2011).

2010

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

2009

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

2008

J. O. Dowd, W. H. Guo, E. Flood, M. Lynch, A. L. Bradley, L. P. Barry, and J. F. Donegan, “Polarization dependence of a GaAs-based two-photon absorption microcavity photodetector,” Opt. Express 16, 17682–17688 (2008).
[CrossRef]

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

2007

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

2005

2004

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

2003

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

2002

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

2001

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

2000

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

1999

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Adams, H.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Allendorf, M.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Andrews, D. L.

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

Baba, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Balu, M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Banerjee, S.

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Barry, L. P.

Belfield, K. D.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Bermejo, M. R.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Bradley, A. L.

Brant, M. C.

Chang, Q.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Chen, J. J.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Chen, K. C.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Chen, X. F.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Chen, X. M.

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

Chen, Z.

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

Cheng, Y.

Clegg, W.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Cox, G. C.

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Cui, Y.

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

Dedov, V. N.

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Dharmaprakash, S. M.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Donegan, J. F.

Dowd, J. O.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Duyne, R. P. V.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Fang, Q. R.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Farha, O. K.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Faust, T. B.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Fernandez-Garcia, M. I.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Fleitz, P. A.

Flood, E.

Fradkin, Z.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Gao, Y. C.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Golan, B.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Gonzalez-Noya, A. M.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Goswami, D.

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Gu, B.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Guo, W. H.

Hagan, D. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Hales, J. M.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Harding, L. P.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

He, G. S.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

Heinrichs, J.

Huang, X.

Hupp, J. T.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Ishizawa, N.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Ji, W.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Jia, T.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Jiang, L. W.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Kachynski, A. V.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Kong, D. G.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Kopnov, G.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Kreno, L. E.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Kuppler, R. J.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Kuzmin, A. N.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Leeder, J. M.

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

Leong, K.

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Li, H. J.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Li, J. R.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Lindinger, A.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Liu, Y.

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

Lu, C.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Lynch, M.

Ma, Y. Z.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Makal, T. A.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Maneiro, M.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

McLean, D. G.

Member, S.

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

Meng, F. S.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Mi, J.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Murphy, T. E.

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

Naaman, R.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

Nag, A.

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

Novotny, L.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Oron, D.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Patil, P. S.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Pedrido, R.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Plewicki, M.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Prasad, P. N.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Qian, S. X.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Rogers, J. E.

Romero, M. J.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Roufogalis, B. D.

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Russo, L.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Sakakibara, S.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Salem, R.

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

Sanchez, E. J.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Sandhu, A. S.

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Schafer, K. J.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Slagle, J. E.

Smalyukh, I. I.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

Song, Y. L.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Srivastava, A.

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

Stryland, E. W. V.

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

Sun, Z.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Sutherland, R. L.

Suzuki, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Tan, L.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

Tian, H.

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Tidmarsh, I. S.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Timmons, D. J.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Tong, M. L.

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

Turu, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

Wang, C.

Wang, H. T.

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Wang, Y. X.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Wang, Z.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Ward, M. D.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

Weber, S. M.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Weise, F.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Wu, A. H.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Wu, W. Z.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Xie, X. S.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Xu, J.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Xuan, W.

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

Yang, K.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Ye, B. H.

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

Ye, H. A.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Young, M. D.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Yuan, D.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Zaragoza, G.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

Zeng, Y.

Zhang, H.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Zhang, M.

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

Zhang, S.

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

Zhang, X. R.

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Zhao, D.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Zhao, F.

Zheng, Q. D.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

Zheng, Y. L.

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

Zhou, H. C.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Zhu, C.

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

Zhuang, W.

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Appl. Phys. B

A. Srivastava and D. Goswami, “Control of supercontinuum generation with polarization of incident laser pulses,” Appl. Phys. B 77, 325–328 (2003).
[CrossRef]

Appl. Phys. Lett.

A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett. 91, 151905 (2007).
[CrossRef]

J. J. Chen, X. F. Chen, A. H. Wu, H. J. Li, Y. L. Zheng, Y. Z. Ma, L. W. Jiang, and J. Xu, “Femtosecond Z-scan measurement of third-order nonlinear refractive indices of BaMgF4,” Appl. Phys. Lett. 98, 191102 (2011).
[CrossRef]

B. Gu, W. Ji, P. S. Patil, S. M. Dharmaprakash, and H. T. Wang, “Two-photon-induced excited-state absorption: theory and experiment,” Appl. Phys. Lett. 92, 091118 (2008).
[CrossRef]

Chem. Phys.

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, “Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules,” Chem. Phys. 332, 313–317 (2007).
[CrossRef]

Chem. Rev.

G. S. He, L. Tan, Q. D. Zheng, and P. N. Prasad, “Multiphoton absorbing materials: molecular designs, characterizations, and applications,” Chem. Rev. 108, 1245–1330 (2008).
[CrossRef]

L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, and J. T. Hupp, “Metal-organic framework materials as chemical sensors,” Chem. Rev. 112, 1105–1125 (2012).
[CrossRef]

Chem. Soc. Rev.

W. Xuan, C. Zhu, Y. Liu, and Y. Cui, “Mesoporous metal-organic framework materials,” Chem. Soc. Rev. 41, 1677–1695 (2012).
[CrossRef]

Coord. Chem. Rev.

B. H. Ye, M. L. Tong, and X. M. Chen, “Metal-organic molecular architectures with 2,2-bipyridyl-like and carboxylate ligands,” Coord. Chem. Rev. 249, 545–565 (2005).
[CrossRef]

R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Yuan, D. Zhao, W. Zhuang, and H. C. Zhou, “Potential applications of metal-organic frameworks,” Coord. Chem. Rev. 253, 3042–3066 (2009).
[CrossRef]

Dalton Trans.

M. J. Romero, R. Pedrido, A. M. Gonzalez-Noya, M. Maneiro, M. I. Fernandez-Garcia, G. Zaragoza, and M. R. Bermejo, “Versatile coordination behavior of an asymmetric half-salen ligand bearing a dansyl fluorophore,” Dalton Trans. 41, 10832–10844 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

R. Salem, S. Member, and T. E. Murphy, “Broad-band optical clock recovery system using two-photon Absorption,” IEEE Photon. Technol. Lett. 16, 2141–2143 (2004).
[CrossRef]

J. Am. Chem. Soc.

I. S. Tidmarsh, T. B. Faust, H. Adams, L. P. Harding, L. Russo, W. Clegg, and M. D. Ward, “Octanuclear cubic coordination cages,” J. Am. Chem. Soc. 130, 15167–15175 (2008).
[CrossRef]

W. Xuan, M. Zhang, Y. Liu, Z. Chen, and Y. Cui, “A chiral quadruple-stranded helicate cage for enantioselective recognition and separation,” J. Am. Chem. Soc. 134, 6904–6907 (2012).
[CrossRef]

J. Chem. Phys.

B. Golan, Z. Fradkin, G. Kopnov, D. Oron, and R. Naaman, “Controlling two-photon photoemission using polarization pulse shaping,” J. Chem. Phys. 130, 064705 (2009).
[CrossRef]

J. M. Leeder and D. L. Andrews, “A molecular theory for two-photon and three-photon fluorescence polarization,” J. Chem. Phys. 134, 094503 (2011).
[CrossRef]

A. Nag and D. Goswami, “Polarization induced control of single and two-photon fluorescence,” J. Chem. Phys. 132, 154508 (2010).
[CrossRef]

S. Zhang, H. Zhang, C. Lu, T. Jia, Z. Wang, and Z. Sun, “Mechanism of polarization-induced single-photon fluorescence enhancement,” J. Chem. Phys. 133, 214504 (2010).
[CrossRef]

J. Opt. Soc. Am. B

J. Photochem. Photobiol., A

K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. V. Stryland, and D. J. Hagan, “Two-photon absorption cross-sections of common photoinitiators,” J. Photochem. Photobiol., A 162, 497–502 (2004).
[CrossRef]

J. Phys. B

D. G. Kong, Q. Chang, H. A. Ye, Y. C. Gao, Y. X. Wang, X. R. Zhang, K. Yang, W. Z. Wu, and Y. L. Song, “The fifth-order nonlinearity of CS2,” J. Phys. B 42, 065401 (2009).
[CrossRef]

Micron

V. N. Dedov, G. C. Cox, and B. D. Roufogalis, “Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy,” Micron 32, 653–660 (2001).
[CrossRef]

Opt. Commun.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun. 231, 431–436 (2004).
[CrossRef]

A. S. Sandhu, S. Banerjee, and D. Goswami, “Suppression of supercontinuum generation with circularly polarized light,” Opt. Commun. 181, 101–107 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

E. J. Sanchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90, 213902 (2003).
[CrossRef]

Polymer

F. S. Meng, J. Mi, S. X. Qian, K. C. Chen, and H. Tian, “Linear and tri-branched copolymers for two-photon absorption and two-photon fluorescent materials,” Polymer 44, 6851–6855 (2003).
[CrossRef]

Rep. Prog. Phys.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics