Abstract

We perform time-resolved laser-induced fluorescence measurements of mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs) in nitrogen and air. We observe the multipeak emission spectrum of NO and find that the emission peak intensity in the 247–248 nm range is stronger than expected compared to the other NO emission peak intensities. This increased emission intensity is believed to be due to neutral carbon [C(I)], which has a strong emission peak at 247.85 nm. By comparing the ratios of integrated emission peak intensities with those expected from the Franck–Condon factors for NO, we are able to identify samples that exhibit C(I) emission. We show that the DNTs exhibit C(I) emission for gate delays of 1500 ns and beyond, while the MNTs exhibit C(I) emission for gate delays of only up to about 500 ns. Carbon deposits in the analysis chamber confirm the presence of C. Ambient NO in air enhances the observed NO+C(I) signal from MNTs and DNTs.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Boesl, H. J. Neusser, and E. W. Schlag, “Visible and UV multi-photon ionization and fragmentation of polyatomic-molecules,” J. Chem. Phys. 72, 4327–4333 (1980).
    [CrossRef]
  2. K. J. Castle, J. E. Abbott, X. Z. Peng, and W. Kong, “Photodissociation of o-nitrotoluene between 220 and 250 nm in a uniform electric field,” J. Phys. Chem. A 104, 10419–10425 (2000).
    [CrossRef]
  3. S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, “A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene,” J. Phys. Chem. A 110, 10130–10134 (2006).
    [CrossRef]
  4. J. C. Choe and M. S. Kim, “Photodissociation kinetics of the para-nitrotoluene molecular ion on a nanosecond time scale,” J. Phys. Chem. 95, 50–56 (1991).
    [CrossRef]
  5. Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
    [CrossRef]
  6. C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
    [CrossRef]
  7. C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
    [CrossRef]
  8. M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).
  9. A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).
  10. T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
    [CrossRef]
  11. S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
    [CrossRef]
  12. J. D. Shao and T. Baer, “The dissociation dynamics of energy selected ortho-nitrotoluene ions,” Int. J. Mass Spectrom. Ion Processes 86, 357–367 (1988).
  13. J. B. Simeonsson, G. W. Lemire, and R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
    [CrossRef]
  14. C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
    [CrossRef]
  15. Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
    [CrossRef]
  16. P. K. Chowdhury, “Direct observation of OH formation and luminescent emission from photoexcited acetaldoxime,” J. Phys. Chem. A 106, 10488–10493 (2002).
    [CrossRef]
  17. K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
    [CrossRef]
  18. G. Tanaka and C. Weatherford, “Decomposition mechanisms of dinitrotoluene,” Int. J. Quantum Chem. 108, 2924–2934 (2008).
    [CrossRef]
  19. C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47, 5767–5776 (2008).
    [CrossRef]
  20. C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18, 5399–5406 (2010).
    [CrossRef]
  21. B. Wen and H. Eilers, “Potential interference mechanism for the detection of explosives via laser-based standoff techniques,” Appl. Phys. B 106, 473–482 (2012).
  22. P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
    [CrossRef]
  23. F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
    [CrossRef]
  24. J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012).
    [CrossRef]
  25. J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52, B10–B19 (2013).
    [CrossRef]
  26. A. Kramida, Y. Ralchenko, and J. Reader and NIST ASD Team, “NIST Atomic Spectra Database (version 5.1),” National Institute of Standards and Technology, 2012 [Online]. Available: http://physics.nist.gov/asd .
  27. T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
    [CrossRef]
  28. W. L. Wiese and J. R. Fuhr, “Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen,” J. Phys. Chem. Ref. Data 36, 1287–1345 (2007).
    [CrossRef]
  29. M. Castillejo, M. Martin, R. de Nalda, and J. Solis, “Nanosecond versus picosecond near UV multiphoton dissociation of ketene,” Chem. Phys. Lett. 268, 465–470 (1997).
    [CrossRef]
  30. P. Chen, J. B. Pallix, W. A. Chupka, and S. D. Colson, “High-power laser photochemistry—production of neutral atomic and small molecular fragments by UV multiphoton dissociation,” J. Chem. Phys. 84, 527–528 (1986).
    [CrossRef]
  31. J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
    [CrossRef]
  32. M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
    [CrossRef]
  33. R. L. Whetten, K. J. Fu, R. S. Tapper, and E. R. Grant, “Highly efficient production of neutral carbon-atoms in the ultraviolet multiphoton fragmentation of aromatic-molecules,” J. Phys. Chem. 87, 1484–1487 (1983).
    [CrossRef]
  34. T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 degrees C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001).
    [CrossRef]
  35. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef]
  36. P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).
  37. D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
    [CrossRef]
  38. A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49, 2072–2078 (2010).
    [CrossRef]
  39. J. D. White, F. A. Akin, H. Oser, and D. R. Crosley, “Production of the NO photofragment in the desorption of RDX and HMX from surfaces,” Appl. Opt. 50, 74–81 (2011).
    [CrossRef]
  40. D. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
    [CrossRef]
  41. A. Esteve-Nunez, A. Caballero, and J. L. Ramos, “Biological degradation of 2,4,6-trinitrotoluene,” Microbiol. Mol. Biol. Rev. 65, 335–352 (2001).
    [CrossRef]
  42. H. Diez-y-Riega and H. Eilers, “UV and 532 nm photo-dissociation of 2-nitrotoluene: observation of electronically-excited NO; emission from carbon (I); N2-NO energy transfer; and stabilization of 2-nitrotoluene-Ar clusters,” Appl. Phys. B 108, 189–196 (2012).
  43. P. Kelley, ed. Physics of Quantum Electronics (McGraw-Hill, 1966).
  44. C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44, 1179–1188 (1973).
    [CrossRef]
  45. J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 μ,” J. Appl. Phys. 53, 851–855 (1982).
    [CrossRef]
  46. P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, “Submillimeter‐laser‐induced air breakdown,” Appl. Phys. Lett. 32, 527–529 (1978).
    [CrossRef]
  47. M. J. Soileau, “Air breakdown by pulsed‐laser radiation in the 2.7‐ and 3.8‐μm region,” Appl. Phys. Lett. 35, 309–311 (1979).
    [CrossRef]
  48. B. K. Deka, P. E. Dyer, D. J. James, and S. A. Ramsden, “Gas breakdown threshold measurements using a pulsed HF/DF laser,” Opt. Commun. 19, 292–296 (1976).
    [CrossRef]
  49. A. W. Ali, “On Laser Air Breakdown, Threshold Power and Laser Generated Channel Length” (Naval Research Laboratory, 1983).
  50. T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(ν′ = 0,1,2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
    [CrossRef]
  51. H. A. Ory, A. P. Gittleman, and J. P. Maddox, “Franck–Condon factors for the NO beta and gamma band systems,” Astrophys. J. 139, 346–356 (1964).
    [CrossRef]
  52. K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).
  53. W. F. Chen, L. F. Yan, and P. R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon 48, 1146–1152 (2010).
    [CrossRef]
  54. W. F. Chen, L. F. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C 114, 19885–19890 (2010).
    [CrossRef]
  55. A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Phil. Trans. R. Soc. A 362, 2477–2512 (2004).
    [CrossRef]
  56. I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nat. Commun. 1, 1–6 (2010).
    [CrossRef]
  57. M. Castillejo, S. Couris, E. Koudoumas, and M. Martin, “Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm,” Chem. Phys. Lett. 289, 303–310 (1998).
    [CrossRef]
  58. A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
    [CrossRef]
  59. M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101–5104 (1998).
    [CrossRef]
  60. C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
    [CrossRef]
  61. P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
    [CrossRef]
  62. K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
    [CrossRef]
  63. S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
    [CrossRef]
  64. A. Lofthus and P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
    [CrossRef]
  65. C. Weickhardt and K. Tonnies, “Short pulse laser mass spectrometry of nitrotoluenes: ionization and fragmentation behavior,” Rapid Commun. Mass Spectrom. 16, 442–446 (2002).
    [CrossRef]
  66. H. Ostmark, S. Wallin, and H. G. Ang, “Vapor pressure of explosives: a critical preview,” Propellants Explos. Pyrotech. 37, 12–23 (2012).
    [CrossRef]

2013

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
[CrossRef]

J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52, B10–B19 (2013).
[CrossRef]

2012

J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
[CrossRef]

H. Ostmark, S. Wallin, and H. G. Ang, “Vapor pressure of explosives: a critical preview,” Propellants Explos. Pyrotech. 37, 12–23 (2012).
[CrossRef]

C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
[CrossRef]

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

B. Wen and H. Eilers, “Potential interference mechanism for the detection of explosives via laser-based standoff techniques,” Appl. Phys. B 106, 473–482 (2012).

H. Diez-y-Riega and H. Eilers, “UV and 532 nm photo-dissociation of 2-nitrotoluene: observation of electronically-excited NO; emission from carbon (I); N2-NO energy transfer; and stabilization of 2-nitrotoluene-Ar clusters,” Appl. Phys. B 108, 189–196 (2012).

2011

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).

J. D. White, F. A. Akin, H. Oser, and D. R. Crosley, “Production of the NO photofragment in the desorption of RDX and HMX from surfaces,” Appl. Opt. 50, 74–81 (2011).
[CrossRef]

2010

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
[CrossRef]

C. M. Wynn, S. Palmacci, R. R. Kunz, and M. Rothschild, “Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence,” Opt. Express 18, 5399–5406 (2010).
[CrossRef]

A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49, 2072–2078 (2010).
[CrossRef]

W. F. Chen, L. F. Yan, and P. R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon 48, 1146–1152 (2010).
[CrossRef]

W. F. Chen, L. F. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C 114, 19885–19890 (2010).
[CrossRef]

I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

2009

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(ν′ = 0,1,2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

2008

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47, 5767–5776 (2008).
[CrossRef]

G. Tanaka and C. Weatherford, “Decomposition mechanisms of dinitrotoluene,” Int. J. Quantum Chem. 108, 2924–2934 (2008).
[CrossRef]

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

2007

M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).

W. L. Wiese and J. R. Fuhr, “Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen,” J. Phys. Chem. Ref. Data 36, 1287–1345 (2007).
[CrossRef]

2006

S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, “A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene,” J. Phys. Chem. A 110, 10130–10134 (2006).
[CrossRef]

2004

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Phil. Trans. R. Soc. A 362, 2477–2512 (2004).
[CrossRef]

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

2002

C. Weickhardt and K. Tonnies, “Short pulse laser mass spectrometry of nitrotoluenes: ionization and fragmentation behavior,” Rapid Commun. Mass Spectrom. 16, 442–446 (2002).
[CrossRef]

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

P. K. Chowdhury, “Direct observation of OH formation and luminescent emission from photoexcited acetaldoxime,” J. Phys. Chem. A 106, 10488–10493 (2002).
[CrossRef]

2001

A. Esteve-Nunez, A. Caballero, and J. L. Ramos, “Biological degradation of 2,4,6-trinitrotoluene,” Microbiol. Mol. Biol. Rev. 65, 335–352 (2001).
[CrossRef]

K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 degrees C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001).
[CrossRef]

2000

K. J. Castle, J. E. Abbott, X. Z. Peng, and W. Kong, “Photodissociation of o-nitrotoluene between 220 and 250 nm in a uniform electric field,” J. Phys. Chem. A 104, 10419–10425 (2000).
[CrossRef]

1998

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101–5104 (1998).
[CrossRef]

M. Castillejo, S. Couris, E. Koudoumas, and M. Martin, “Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm,” Chem. Phys. Lett. 289, 303–310 (1998).
[CrossRef]

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

1997

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

M. Castillejo, M. Martin, R. de Nalda, and J. Solis, “Nanosecond versus picosecond near UV multiphoton dissociation of ketene,” Chem. Phys. Lett. 268, 465–470 (1997).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

1996

1995

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
[CrossRef]

1994

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

1993

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).

J. B. Simeonsson, G. W. Lemire, and R. C. Sausa, “Trace detection of nitrocompounds by ArF laser photofragmentation ionization spectrometry,” Appl. Spectrosc. 47, 1907–1912 (1993).
[CrossRef]

1991

J. C. Choe and M. S. Kim, “Photodissociation kinetics of the para-nitrotoluene molecular ion on a nanosecond time scale,” J. Phys. Chem. 95, 50–56 (1991).
[CrossRef]

1988

Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

J. D. Shao and T. Baer, “The dissociation dynamics of energy selected ortho-nitrotoluene ions,” Int. J. Mass Spectrom. Ion Processes 86, 357–367 (1988).

1986

P. Chen, J. B. Pallix, W. A. Chupka, and S. D. Colson, “High-power laser photochemistry—production of neutral atomic and small molecular fragments by UV multiphoton dissociation,” J. Chem. Phys. 84, 527–528 (1986).
[CrossRef]

1983

R. L. Whetten, K. J. Fu, R. S. Tapper, and E. R. Grant, “Highly efficient production of neutral carbon-atoms in the ultraviolet multiphoton fragmentation of aromatic-molecules,” J. Phys. Chem. 87, 1484–1487 (1983).
[CrossRef]

1982

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

1980

U. Boesl, H. J. Neusser, and E. W. Schlag, “Visible and UV multi-photon ionization and fragmentation of polyatomic-molecules,” J. Chem. Phys. 72, 4327–4333 (1980).
[CrossRef]

1979

M. J. Soileau, “Air breakdown by pulsed‐laser radiation in the 2.7‐ and 3.8‐μm region,” Appl. Phys. Lett. 35, 309–311 (1979).
[CrossRef]

1978

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, “Submillimeter‐laser‐induced air breakdown,” Appl. Phys. Lett. 32, 527–529 (1978).
[CrossRef]

1977

A. Lofthus and P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

1976

B. K. Deka, P. E. Dyer, D. J. James, and S. A. Ramsden, “Gas breakdown threshold measurements using a pulsed HF/DF laser,” Opt. Commun. 19, 292–296 (1976).
[CrossRef]

1973

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44, 1179–1188 (1973).
[CrossRef]

1964

H. A. Ory, A. P. Gittleman, and J. P. Maddox, “Franck–Condon factors for the NO beta and gamma band systems,” Astrophys. J. 139, 346–356 (1964).
[CrossRef]

Abbott, J. E.

K. J. Castle, J. E. Abbott, X. Z. Peng, and W. Kong, “Photodissociation of o-nitrotoluene between 220 and 250 nm in a uniform electric field,” J. Phys. Chem. A 104, 10419–10425 (2000).
[CrossRef]

Akin, F. A.

Ali, A. W.

A. W. Ali, “On Laser Air Breakdown, Threshold Power and Laser Generated Channel Length” (Naval Research Laboratory, 1983).

Ang, H. G.

H. Ostmark, S. Wallin, and H. G. Ang, “Vapor pressure of explosives: a critical preview,” Propellants Explos. Pyrotech. 37, 12–23 (2012).
[CrossRef]

Arusi-Parpar, T.

Babushok, V. I.

Baer, T.

J. D. Shao and T. Baer, “The dissociation dynamics of energy selected ortho-nitrotoluene ions,” Int. J. Mass Spectrom. Ion Processes 86, 357–367 (1988).

Bajaj, P.

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

Bangal, P. R.

W. F. Chen, L. F. Yan, and P. R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon 48, 1146–1152 (2010).
[CrossRef]

W. F. Chen, L. F. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C 114, 19885–19890 (2010).
[CrossRef]

Bastl, Z.

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Boesl, U.

U. Boesl, H. J. Neusser, and E. W. Schlag, “Visible and UV multi-photon ionization and fragmentation of polyatomic-molecules,” J. Chem. Phys. 72, 4327–4333 (1980).
[CrossRef]

Caballero, A.

A. Esteve-Nunez, A. Caballero, and J. L. Ramos, “Biological degradation of 2,4,6-trinitrotoluene,” Microbiol. Mol. Biol. Rev. 65, 335–352 (2001).
[CrossRef]

Cao, M. Q.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Castillejo, M.

M. Castillejo, S. Couris, E. Koudoumas, and M. Martin, “Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm,” Chem. Phys. Lett. 289, 303–310 (1998).
[CrossRef]

M. Castillejo, M. Martin, R. de Nalda, and J. Solis, “Nanosecond versus picosecond near UV multiphoton dissociation of ketene,” Chem. Phys. Lett. 268, 465–470 (1997).
[CrossRef]

Castle, K. J.

K. J. Castle, J. E. Abbott, X. Z. Peng, and W. Kong, “Photodissociation of o-nitrotoluene between 220 and 250 nm in a uniform electric field,” J. Phys. Chem. A 104, 10419–10425 (2000).
[CrossRef]

Chan, C. H.

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44, 1179–1188 (1973).
[CrossRef]

Chen, M. H.

C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
[CrossRef]

Chen, P.

P. Chen, J. B. Pallix, W. A. Chupka, and S. D. Colson, “High-power laser photochemistry—production of neutral atomic and small molecular fragments by UV multiphoton dissociation,” J. Chem. Phys. 84, 527–528 (1986).
[CrossRef]

Chen, S. C.

S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, “A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene,” J. Phys. Chem. A 110, 10130–10134 (2006).
[CrossRef]

Chen, W. F.

W. F. Chen, L. F. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C 114, 19885–19890 (2010).
[CrossRef]

W. F. Chen, L. F. Yan, and P. R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon 48, 1146–1152 (2010).
[CrossRef]

Chen, Z. Y.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

Choe, J. C.

J. C. Choe and M. S. Kim, “Photodissociation kinetics of the para-nitrotoluene molecular ion on a nanosecond time scale,” J. Phys. Chem. 95, 50–56 (1991).
[CrossRef]

Chowdhury, P. K.

P. K. Chowdhury, “Direct observation of OH formation and luminescent emission from photoexcited acetaldoxime,” J. Phys. Chem. A 106, 10488–10493 (2002).
[CrossRef]

Chupka, W. A.

P. Chen, J. B. Pallix, W. A. Chupka, and S. D. Colson, “High-power laser photochemistry—production of neutral atomic and small molecular fragments by UV multiphoton dissociation,” J. Chem. Phys. 84, 527–528 (1986).
[CrossRef]

Clark, A.

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).

Clow, K.

Coggiola, M. J.

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

Cohn, D. R.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, “Submillimeter‐laser‐induced air breakdown,” Appl. Phys. Lett. 32, 527–529 (1978).
[CrossRef]

Colson, S. D.

P. Chen, J. B. Pallix, W. A. Chupka, and S. D. Colson, “High-power laser photochemistry—production of neutral atomic and small molecular fragments by UV multiphoton dissociation,” J. Chem. Phys. 84, 527–528 (1986).
[CrossRef]

Couris, S.

M. Castillejo, S. Couris, E. Koudoumas, and M. Martin, “Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm,” Chem. Phys. Lett. 289, 303–310 (1998).
[CrossRef]

Crosley, D. R.

Crowley, C.

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Cui, J. P.

Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

Dagdigian, P. J.

De Lucia, F. C.

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
[CrossRef]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

de Nalda, R.

M. Castillejo, M. Martin, R. de Nalda, and J. Solis, “Nanosecond versus picosecond near UV multiphoton dissociation of ketene,” Chem. Phys. Lett. 268, 465–470 (1997).
[CrossRef]

Deas, R. M.

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

Deka, B. K.

B. K. Deka, P. E. Dyer, D. J. James, and S. A. Ramsden, “Gas breakdown threshold measurements using a pulsed HF/DF laser,” Opt. Commun. 19, 292–296 (1976).
[CrossRef]

DeWitt, M. J.

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101–5104 (1998).
[CrossRef]

Dhanya, S.

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

Diau, E.

S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, “A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene,” J. Phys. Chem. A 110, 10130–10134 (2006).
[CrossRef]

Diez-y-Riega, H.

H. Diez-y-Riega and H. Eilers, “UV and 532 nm photo-dissociation of 2-nitrotoluene: observation of electronically-excited NO; emission from carbon (I); N2-NO energy transfer; and stabilization of 2-nitrotoluene-Ar clusters,” Appl. Phys. B 108, 189–196 (2012).

Dona, A.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).

Dyer, P. E.

B. K. Deka, P. E. Dyer, D. J. James, and S. A. Ramsden, “Gas breakdown threshold measurements using a pulsed HF/DF laser,” Opt. Commun. 19, 292–296 (1976).
[CrossRef]

Eilers, H.

H. Diez-y-Riega and H. Eilers, “UV and 532 nm photo-dissociation of 2-nitrotoluene: observation of electronically-excited NO; emission from carbon (I); N2-NO energy transfer; and stabilization of 2-nitrotoluene-Ar clusters,” Appl. Phys. B 108, 189–196 (2012).

B. Wen and H. Eilers, “Potential interference mechanism for the detection of explosives via laser-based standoff techniques,” Appl. Phys. B 106, 473–482 (2012).

Esteve-Nunez, A.

A. Esteve-Nunez, A. Caballero, and J. L. Ramos, “Biological degradation of 2,4,6-trinitrotoluene,” Microbiol. Mol. Biol. Rev. 65, 335–352 (2001).
[CrossRef]

Fang, W. Z.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Phil. Trans. R. Soc. A 362, 2477–2512 (2004).
[CrossRef]

Fu, K. J.

R. L. Whetten, K. J. Fu, R. S. Tapper, and E. R. Grant, “Highly efficient production of neutral carbon-atoms in the ultraviolet multiphoton fragmentation of aromatic-molecules,” J. Phys. Chem. 87, 1484–1487 (1983).
[CrossRef]

Fuhr, J. R.

W. L. Wiese and J. R. Fuhr, “Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen,” J. Phys. Chem. Ref. Data 36, 1287–1345 (2007).
[CrossRef]

Gilch, P.

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

Gittleman, A. P.

H. A. Ory, A. P. Gittleman, and J. P. Maddox, “Franck–Condon factors for the NO beta and gamma band systems,” Astrophys. J. 139, 346–356 (1964).
[CrossRef]

Gottfried, J. L.

Graham, P.

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

Grant, E. R.

R. L. Whetten, K. J. Fu, R. S. Tapper, and E. R. Grant, “Highly efficient production of neutral carbon-atoms in the ultraviolet multiphoton fragmentation of aromatic-molecules,” J. Phys. Chem. 87, 1484–1487 (1983).
[CrossRef]

Gregora, I.

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Haiser, K.

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

Hankin, S. M.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

He, Y. Z.

Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

Heflinger, D.

Humphries, W. H.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(ν′ = 0,1,2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

James, D. J.

B. K. Deka, P. E. Dyer, D. J. James, and S. A. Ramsden, “Gas breakdown threshold measurements using a pulsed HF/DF laser,” Opt. Commun. 19, 292–296 (1976).
[CrossRef]

Jaroszynski, D. A.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

Jones, D. R.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

Khachatrian, A.

Kiewisch, K.

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

Kilic, H. S.

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

Kim, M. S.

J. C. Choe and M. S. Kim, “Photodissociation kinetics of the para-nitrotoluene molecular ion on a nanosecond time scale,” J. Phys. Chem. 95, 50–56 (1991).
[CrossRef]

Kong, W.

K. J. Castle, J. E. Abbott, X. Z. Peng, and W. Kong, “Photodissociation of o-nitrotoluene between 220 and 250 nm in a uniform electric field,” J. Phys. Chem. A 104, 10419–10425 (2000).
[CrossRef]

Kosmidis, C.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

Koudoumas, E.

M. Castillejo, S. Couris, E. Koudoumas, and M. Martin, “Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm,” Chem. Phys. Lett. 289, 303–310 (1998).
[CrossRef]

Kramida, A.

A. Kramida, Y. Ralchenko, and J. Reader and NIST ASD Team, “NIST Atomic Spectra Database (version 5.1),” National Institute of Standards and Technology, 2012 [Online]. Available: http://physics.nist.gov/asd .

Krupenie, P. H.

A. Lofthus and P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

Kumar, A.

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

Kunz, R. R.

Laimgruber, S.

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

Langley, A. J.

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

Laserna, J. J.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).

Lavi, R.

Ledingham, K. W. D.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).

Lee, H.

I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Lee, J.

I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Lee, Y. T.

M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).

Lemire, G. W.

Levis, R. J.

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101–5104 (1998).
[CrossRef]

Lin, M. C.

M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).

S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, “A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene,” J. Phys. Chem. A 110, 10130–10134 (2006).
[CrossRef]

Lin, M. F.

M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).

Liu, F. Y.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Lofthus, A.

A. Lofthus and P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

Lucena, P.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).

Maddox, J. P.

H. A. Ory, A. P. Gittleman, and J. P. Maddox, “Franck–Condon factors for the NO beta and gamma band systems,” Astrophys. J. 139, 346–356 (1964).
[CrossRef]

Mallard, W. G.

Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

Marshall, A.

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).

Martin, M.

M. Castillejo, S. Couris, E. Koudoumas, and M. Martin, “Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm,” Chem. Phys. Lett. 289, 303–310 (1998).
[CrossRef]

M. Castillejo, M. Martin, R. de Nalda, and J. Solis, “Nanosecond versus picosecond near UV multiphoton dissociation of ketene,” Chem. Phys. Lett. 268, 465–470 (1997).
[CrossRef]

McCanny, T.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

McKenna, P.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

McKnight, W. B.

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44, 1179–1188 (1973).
[CrossRef]

Mirershadi, S.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Monts, D. L.

Moody, C. D.

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44, 1179–1188 (1973).
[CrossRef]

Moon, I. K.

I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Moore, D. S.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

Mortazavi, S. Z.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
[CrossRef]

Mukherjee, A.

Mullen, C.

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

Mulligan, W. J.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, “Submillimeter‐laser‐induced air breakdown,” Appl. Phys. Lett. 32, 527–529 (1978).
[CrossRef]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Naik, P. D.

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

Nakashima, S.

K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).

Neugebauer, J.

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

Neusser, H. J.

U. Boesl, H. J. Neusser, and E. W. Schlag, “Visible and UV multi-photon ionization and fragmentation of polyatomic-molecules,” J. Chem. Phys. 72, 4327–4333 (1980).
[CrossRef]

Ni, C. K.

M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).

Nishiwaki, S.

K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).

Okada, T.

K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).

Ooie, T.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

Ory, H. A.

H. A. Ory, A. P. Gittleman, and J. P. Maddox, “Franck–Condon factors for the NO beta and gamma band systems,” Astrophys. J. 139, 346–356 (1964).
[CrossRef]

Oser, H.

J. D. White, F. A. Akin, H. Oser, and D. R. Crosley, “Production of the NO photofragment in the desorption of RDX and HMX from surfaces,” Appl. Opt. 50, 74–81 (2011).
[CrossRef]

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

Ostmark, H.

H. Ostmark, S. Wallin, and H. G. Ang, “Vapor pressure of explosives: a critical preview,” Propellants Explos. Pyrotech. 37, 12–23 (2012).
[CrossRef]

Pallix, J. B.

P. Chen, J. B. Pallix, W. A. Chupka, and S. D. Colson, “High-power laser photochemistry—production of neutral atomic and small molecular fragments by UV multiphoton dissociation,” J. Chem. Phys. 84, 527–528 (1986).
[CrossRef]

Palmacci, S.

Parker, J. G.

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

Parvin, P.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
[CrossRef]

Patel, C. K. N.

Patterson, B. D.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(ν′ = 0,1,2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Peng, X. Z.

K. J. Castle, J. E. Abbott, X. Z. Peng, and W. Kong, “Photodissociation of o-nitrotoluene between 220 and 250 nm in a uniform electric field,” J. Phys. Chem. A 104, 10419–10425 (2000).
[CrossRef]

Plzak, Z.

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Pola, J.

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Praddaude, H. C.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, “Submillimeter‐laser‐induced air breakdown,” Appl. Phys. Lett. 32, 527–529 (1978).
[CrossRef]

Ralchenko, Y.

A. Kramida, Y. Ralchenko, and J. Reader and NIST ASD Team, “NIST Atomic Spectra Database (version 5.1),” National Institute of Standards and Technology, 2012 [Online]. Available: http://physics.nist.gov/asd .

Ramos, J. L.

A. Esteve-Nunez, A. Caballero, and J. L. Ramos, “Biological degradation of 2,4,6-trinitrotoluene,” Microbiol. Mol. Biol. Rev. 65, 335–352 (2001).
[CrossRef]

Ramsden, S. A.

B. K. Deka, P. E. Dyer, D. J. James, and S. A. Ramsden, “Gas breakdown threshold measurements using a pulsed HF/DF laser,” Opt. Commun. 19, 292–296 (1976).
[CrossRef]

Reader, J.

A. Kramida, Y. Ralchenko, and J. Reader and NIST ASD Team, “NIST Atomic Spectra Database (version 5.1),” National Institute of Standards and Technology, 2012 [Online]. Available: http://physics.nist.gov/asd .

Reyhani, A.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
[CrossRef]

Robertson, J.

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Phil. Trans. R. Soc. A 362, 2477–2512 (2004).
[CrossRef]

Robson, L.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

Rothschild, M.

Ruoff, R. S.

I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Sadighi-Bonabi, R.

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
[CrossRef]

Sander, J.

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).

Sausa, R. C.

Schlag, E. W.

U. Boesl, H. J. Neusser, and E. W. Schlag, “Visible and UV multi-photon ionization and fragmentation of polyatomic-molecules,” J. Chem. Phys. 72, 4327–4333 (1980).
[CrossRef]

Schmierer, T.

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

SenGupta, S.

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

Settersten, T. B.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(ν′ = 0,1,2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Shaikh, W.

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

Shan, X. B.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Shao, J. D.

J. D. Shao and T. Baer, “The dissociation dynamics of energy selected ortho-nitrotoluene ions,” Int. J. Mass Spectrom. Ion Processes 86, 357–367 (1988).

Sheng, L. S.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Shinozaki, T.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

Simeonsson, J. B.

Singh, J. P.

Singhal, R. P.

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).

Soileau, M. J.

M. J. Soileau, “Air breakdown by pulsed‐laser radiation in the 2.7‐ and 3.8‐μm region,” Appl. Phys. Lett. 35, 309–311 (1979).
[CrossRef]

Solis, J.

M. Castillejo, M. Martin, R. de Nalda, and J. Solis, “Nanosecond versus picosecond near UV multiphoton dissociation of ketene,” Chem. Phys. Lett. 268, 465–470 (1997).
[CrossRef]

Stricker, J.

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

Subrt, J.

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Taday, P. F.

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

Tanaka, G.

G. Tanaka and C. Weatherford, “Decomposition mechanisms of dinitrotoluene,” Int. J. Quantum Chem. 108, 2924–2934 (2008).
[CrossRef]

Tanaka, T.

K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).

Tapper, R. S.

R. L. Whetten, K. J. Fu, R. S. Tapper, and E. R. Grant, “Highly efficient production of neutral carbon-atoms in the ultraviolet multiphoton fragmentation of aromatic-molecules,” J. Phys. Chem. 87, 1484–1487 (1983).
[CrossRef]

Tasker, A. D.

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

Taylor, R.

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Tobaria, L. M.

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).

Tonnies, K.

C. Weickhardt and K. Tonnies, “Short pulse laser mass spectrometry of nitrotoluenes: ionization and fragmentation behavior,” Rapid Commun. Mass Spectrom. 16, 442–446 (2002).
[CrossRef]

Toyota, K.

K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).

Tsang, W.

Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

Tzallas, P.

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

Upadhyaya, H. P.

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

Urbanova, M.

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Von der Porten, S.

Vorlicek, V.

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

Wallin, S.

H. Ostmark, S. Wallin, and H. G. Ang, “Vapor pressure of explosives: a critical preview,” Propellants Explos. Pyrotech. 37, 12–23 (2012).
[CrossRef]

Wang, G. J.

C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
[CrossRef]

Wang, X. L.

C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
[CrossRef]

Wang, Z. Y.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Weatherford, C.

G. Tanaka and C. Weatherford, “Decomposition mechanisms of dinitrotoluene,” Int. J. Quantum Chem. 108, 2924–2934 (2008).
[CrossRef]

Weickhardt, C.

C. Weickhardt and K. Tonnies, “Short pulse laser mass spectrometry of nitrotoluenes: ionization and fragmentation behavior,” Rapid Commun. Mass Spectrom. 16, 442–446 (2002).
[CrossRef]

Wen, B.

B. Wen and H. Eilers, “Potential interference mechanism for the detection of explosives via laser-based standoff techniques,” Appl. Phys. B 106, 473–482 (2012).

Whetten, R. L.

R. L. Whetten, K. J. Fu, R. S. Tapper, and E. R. Grant, “Highly efficient production of neutral carbon-atoms in the ultraviolet multiphoton fragmentation of aromatic-molecules,” J. Phys. Chem. 87, 1484–1487 (1983).
[CrossRef]

White, J. D.

Wiese, W. L.

W. L. Wiese and J. R. Fuhr, “Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen,” J. Phys. Chem. Ref. Data 36, 1287–1345 (2007).
[CrossRef]

Woskoboinikow, P.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, “Submillimeter‐laser‐induced air breakdown,” Appl. Phys. Lett. 32, 527–529 (1978).
[CrossRef]

Wu, D. D.

Wynn, C. M.

Xie, Y.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Xu, S. C.

M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).

S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, “A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene,” J. Phys. Chem. A 110, 10130–10134 (2006).
[CrossRef]

Yan, L. F.

W. F. Chen, L. F. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C 114, 19885–19890 (2010).
[CrossRef]

W. F. Chen, L. F. Yan, and P. R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon 48, 1146–1152 (2010).
[CrossRef]

Yano, T.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

Yoneda, M.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

Yueh, F. Y.

Zhang, C. Y.

C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
[CrossRef]

Zhang, Q.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Zhao, J. P.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

Zhao, Y. J.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

Zhou, M. F.

C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
[CrossRef]

Anal. Bioanal. Chem.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef]

Appl. Opt.

T. Arusi-Parpar, D. Heflinger, and R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 degrees C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001).
[CrossRef]

P. J. Dagdigian, A. Khachatrian, and V. I. Babushok, “Kinetic model of C/H/N/O emissions in laser-induced breakdown spectroscopy of organic compounds,” Appl. Opt. 49, C58–C66 (2010).
[CrossRef]

F. C. De Lucia and J. L. Gottfried, “Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy,” Appl. Opt. 51, B83–B92 (2012).
[CrossRef]

J. L. Gottfried, “Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles,” Appl. Opt. 51, B13–B21 (2012).
[CrossRef]

J. L. Gottfried, “Influence of metal substrates on the detection of explosive residues with laser-induced breakdown spectroscopy,” Appl. Opt. 52, B10–B19 (2013).
[CrossRef]

C. M. Wynn, S. Palmacci, R. R. Kunz, K. Clow, and M. Rothschild, “Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation,” Appl. Opt. 47, 5767–5776 (2008).
[CrossRef]

A. Mukherjee, S. Von der Porten, and C. K. N. Patel, “Standoff detection of explosive substances at distances of up to 150 m,” Appl. Opt. 49, 2072–2078 (2010).
[CrossRef]

J. D. White, F. A. Akin, H. Oser, and D. R. Crosley, “Production of the NO photofragment in the desorption of RDX and HMX from surfaces,” Appl. Opt. 50, 74–81 (2011).
[CrossRef]

D. D. Wu, J. P. Singh, F. Y. Yueh, and D. L. Monts, “2,4,6-trinitrotoluene detection by laser-photofragmentation-laser-induced fluorescence,” Appl. Opt. 35, 3998–4003 (1996).
[CrossRef]

Appl. Phys. B

H. Diez-y-Riega and H. Eilers, “UV and 532 nm photo-dissociation of 2-nitrotoluene: observation of electronically-excited NO; emission from carbon (I); N2-NO energy transfer; and stabilization of 2-nitrotoluene-Ar clusters,” Appl. Phys. B 108, 189–196 (2012).

B. Wen and H. Eilers, “Potential interference mechanism for the detection of explosives via laser-based standoff techniques,” Appl. Phys. B 106, 473–482 (2012).

Appl. Phys. Lett.

P. Woskoboinikow, W. J. Mulligan, H. C. Praddaude, and D. R. Cohn, “Submillimeter‐laser‐induced air breakdown,” Appl. Phys. Lett. 32, 527–529 (1978).
[CrossRef]

M. J. Soileau, “Air breakdown by pulsed‐laser radiation in the 2.7‐ and 3.8‐μm region,” Appl. Phys. Lett. 35, 309–311 (1979).
[CrossRef]

Appl. Spectrosc.

Appl. Surf. Sci.

T. Shinozaki, T. Ooie, T. Yano, J. P. Zhao, Z. Y. Chen, and M. Yoneda, “Laser-induced optical emission of carbon plume by excimer and Nd:YAG laser irradiation,” Appl. Surf. Sci. 197, 263–267 (2002).
[CrossRef]

Astrophys. J.

H. A. Ory, A. P. Gittleman, and J. P. Maddox, “Franck–Condon factors for the NO beta and gamma band systems,” Astrophys. J. 139, 346–356 (1964).
[CrossRef]

Carbon

W. F. Chen, L. F. Yan, and P. R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves,” Carbon 48, 1146–1152 (2010).
[CrossRef]

J. Pola, M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, V. Vorlicek, I. Gregora, C. Crowley, and R. Taylor, “Laser photolysis of liquid benzene and toluene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 35, 605–611 (1997).
[CrossRef]

M. Urbanova, Z. Bastl, Z. Plzak, J. Subrt, I. Gregora, V. Vorlicek, and J. Pola, “Laser photolysis of liquid benzene and hexafluorobenzene: graphitic and polymeric carbon formation at ambient temperature,” Carbon 36, 517–520 (1998).
[CrossRef]

Chem. Phys.

C. Y. Zhang, M. H. Chen, G. J. Wang, X. L. Wang, and M. F. Zhou, “Photo-induced isomerization of three nitrotoluene isomers: a matrix-isolation infrared spectroscopic and quantum-chemical study,” Chem. Phys. 392, 198–204 (2012).
[CrossRef]

Chem. Phys. Lett.

S. SenGupta, H. P. Upadhyaya, A. Kumar, S. Dhanya, P. D. Naik, and P. Bajaj, “Photodissociation dynamics of nitrotoluene at 193 and 248 nm: direct observation of OH formation,” Chem. Phys. Lett. 452, 239–244 (2008).
[CrossRef]

M. Castillejo, M. Martin, R. de Nalda, and J. Solis, “Nanosecond versus picosecond near UV multiphoton dissociation of ketene,” Chem. Phys. Lett. 268, 465–470 (1997).
[CrossRef]

M. Castillejo, S. Couris, E. Koudoumas, and M. Martin, “Subpicosecond ionization and dissociation of benzene and cyclic alkanes at 800 and 400 nm,” Chem. Phys. Lett. 289, 303–310 (1998).
[CrossRef]

Int. J. Mass Spectrom. Ion Processes

J. D. Shao and T. Baer, “The dissociation dynamics of energy selected ortho-nitrotoluene ions,” Int. J. Mass Spectrom. Ion Processes 86, 357–367 (1988).

A. Marshall, A. Clark, K. W. D. Ledingham, J. Sander, and R. P. Singhal, “Laser ionization studies of nitroaromatic and NOx (X = 1 or 2) molecules in the region 224 nm–238 nm,” Int. J. Mass Spectrom. Ion Processes 125, R21–R26 (1993).

Int. J. Quantum Chem.

G. Tanaka and C. Weatherford, “Decomposition mechanisms of dinitrotoluene,” Int. J. Quantum Chem. 108, 2924–2934 (2008).
[CrossRef]

J. Am. Chem. Soc.

Y. Z. He, J. P. Cui, W. G. Mallard, and W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

J. Am. Soc. Mass Spectrom.

C. Mullen, M. J. Coggiola, and H. Oser, “Femtosecond laser photoionization time-of-flight mass spectrometry of nitro-aromatic explosives and explosives related compounds,” J. Am. Soc. Mass Spectrom. 20, 419–429 (2009).
[CrossRef]

J. Appl. Phys.

C. H. Chan, C. D. Moody, and W. B. McKnight, “Significant loss mechanisms in gas breakdown at 10.6 μ,” J. Appl. Phys. 44, 1179–1188 (1973).
[CrossRef]

J. Stricker and J. G. Parker, “Experimental investigation of electrical breakdown in nitrogen and oxygen induced by focused laser radiation at 1.064 μ,” J. Appl. Phys. 53, 851–855 (1982).
[CrossRef]

J. Chem. Phys.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+(ν′ = 0,1,2) and the electronic transition moment of the A2Σ+-X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

U. Boesl, H. J. Neusser, and E. W. Schlag, “Visible and UV multi-photon ionization and fragmentation of polyatomic-molecules,” J. Chem. Phys. 72, 4327–4333 (1980).
[CrossRef]

M. F. Lin, Y. T. Lee, C. K. Ni, S. C. Xu, and M. C. Lin, “Photodissociation dynamics of nitrobenzene and o-nitrotoluene,” J. Chem. Phys. 126, 064310 (2007).

P. Chen, J. B. Pallix, W. A. Chupka, and S. D. Colson, “High-power laser photochemistry—production of neutral atomic and small molecular fragments by UV multiphoton dissociation,” J. Chem. Phys. 84, 527–528 (1986).
[CrossRef]

J. Mol. Struct.

Q. Zhang, W. Z. Fang, Y. Xie, M. Q. Cao, Y. J. Zhao, X. B. Shan, F. Y. Liu, Z. Y. Wang, and L. S. Sheng, “Photoionization and dissociation study of p-nitrotoluene: experimental and theoretical insights,” J. Mol. Struct. 1020, 105–111 (2012).
[CrossRef]

J. Photochem. Photobiol., A

K. Toyota, T. Tanaka, S. Nishiwaki, S. Nakashima, and T. Okada, “Analysis of products from breakdown of liquid benzene, toluene and cyclohexane caused by Nd3+:YAG pulsed laser irradiation,” J. Photochem. Photobiol., A 141, 9–16 (2001).

J. Phys. Chem.

J. C. Choe and M. S. Kim, “Photodissociation kinetics of the para-nitrotoluene molecular ion on a nanosecond time scale,” J. Phys. Chem. 95, 50–56 (1991).
[CrossRef]

R. L. Whetten, K. J. Fu, R. S. Tapper, and E. R. Grant, “Highly efficient production of neutral carbon-atoms in the ultraviolet multiphoton fragmentation of aromatic-molecules,” J. Phys. Chem. 87, 1484–1487 (1983).
[CrossRef]

J. Phys. Chem. A

K. J. Castle, J. E. Abbott, X. Z. Peng, and W. Kong, “Photodissociation of o-nitrotoluene between 220 and 250 nm in a uniform electric field,” J. Phys. Chem. A 104, 10419–10425 (2000).
[CrossRef]

S. C. Chen, S. C. Xu, E. Diau, and M. C. Lin, “A computational study on the kinetics and mechanism for the unimolecular decomposition of o-nitrotoluene,” J. Phys. Chem. A 110, 10130–10134 (2006).
[CrossRef]

C. Kosmidis, K. W. D. Ledingham, H. S. Kilic, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “On the fragmentation of nitrobenzene and nitrotoluenes induced by a femtosecond laser at 375 nm,” J. Phys. Chem. A 101, 2264–2270 (1997).
[CrossRef]

P. K. Chowdhury, “Direct observation of OH formation and luminescent emission from photoexcited acetaldoxime,” J. Phys. Chem. A 106, 10488–10493 (2002).
[CrossRef]

A. D. Tasker, L. Robson, K. W. D. Ledingham, T. McCanny, S. M. Hankin, P. McKenna, C. Kosmidis, D. A. Jaroszynski, and D. R. Jones, “A high mass resolution study of the interaction of aromatic and nitro-aromatic molecules with intense laser fields,” J. Phys. Chem. A 106, 4005–4013 (2002).
[CrossRef]

P. Tzallas, C. Kosmidis, K. W. D. Ledingham, R. P. Singhal, T. McCanny, P. Graham, S. M. Hankin, P. F. Taday, and A. J. Langley, “On the multielectron dissociative ionization of some cyclic aromatic molecules induced by strong laser fields,” J. Phys. Chem. A 105, 529–536 (2001).
[CrossRef]

J. Phys. Chem. C

W. F. Chen, L. F. Yan, and P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” J. Phys. Chem. C 114, 19885–19890 (2010).
[CrossRef]

J. Phys. Chem. Ref. Data

A. Lofthus and P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).
[CrossRef]

W. L. Wiese and J. R. Fuhr, “Improved critical compilations of selected atomic transition probabilities for neutral and singly ionized carbon and nitrogen,” J. Phys. Chem. Ref. Data 36, 1287–1345 (2007).
[CrossRef]

J. Phys. D

S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. Sadighi-Bonabi, “Generation of various carbon nanostructures in water using IR/UV laser ablation,” J. Phys. D 46, 165303 (2013).
[CrossRef]

Microbiol. Mol. Biol. Rev.

A. Esteve-Nunez, A. Caballero, and J. L. Ramos, “Biological degradation of 2,4,6-trinitrotoluene,” Microbiol. Mol. Biol. Rev. 65, 335–352 (2001).
[CrossRef]

Nat. Commun.

I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nat. Commun. 1, 1–6 (2010).
[CrossRef]

Opt. Commun.

B. K. Deka, P. E. Dyer, D. J. James, and S. A. Ramsden, “Gas breakdown threshold measurements using a pulsed HF/DF laser,” Opt. Commun. 19, 292–296 (1976).
[CrossRef]

Opt. Express

Phil. Trans. R. Soc. A

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Phil. Trans. R. Soc. A 362, 2477–2512 (2004).
[CrossRef]

Phys. Chem. Chem. Phys.

T. Schmierer, S. Laimgruber, K. Haiser, K. Kiewisch, J. Neugebauer, and P. Gilch, “Femtosecond spectroscopy on the photochemistry of ortho-nitrotoluene,” Phys. Chem. Chem. Phys. 12, 15653–15664 (2010).
[CrossRef]

Phys. Rev. Lett.

M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101–5104 (1998).
[CrossRef]

Phys. Scr.

K. W. D. Ledingham, “The use of lasers to detect strategic and environmentally sensitive materials,” Phys. Scr. T58, 100–103 (1995).
[CrossRef]

Propellants Explos. Pyrotech.

H. Ostmark, S. Wallin, and H. G. Ang, “Vapor pressure of explosives: a critical preview,” Propellants Explos. Pyrotech. 37, 12–23 (2012).
[CrossRef]

Rapid Commun. Mass Spectrom.

C. Weickhardt and K. Tonnies, “Short pulse laser mass spectrometry of nitrotoluenes: ionization and fragmentation behavior,” Rapid Commun. Mass Spectrom. 16, 442–446 (2002).
[CrossRef]

K. W. D. Ledingham, H. S. Kilic, C. Kosmidis, R. M. Deas, A. Marshall, T. McCanny, R. P. Singhal, A. J. Langley, and W. Shaikh, “A comparison of femtosecond and nanosecond multiphoton ionization and dissociation for some nitro-molecules,” Rapid Commun. Mass Spectrom. 9, 1522–1527 (1995).
[CrossRef]

C. Kosmidis, A. Marshall, A. Clark, R. M. Deas, K. W. D. Ledingham, and R. P. Singhal, “Multiphoton ionization and dissociation of nitrotoluene isomers by UV laser-light,” Rapid Commun. Mass Spectrom. 8, 607–614 (1994).
[CrossRef]

Rev. Sci. Instrum.

D. S. Moore, “Instrumentation for trace detection of high explosives,” Rev. Sci. Instrum. 75, 2499–2512 (2004).
[CrossRef]

Spectrochim. Acta Part B

P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, “New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy,” Spectrochim. Acta Part B 66, 12–20 (2011).

Other

A. Kramida, Y. Ralchenko, and J. Reader and NIST ASD Team, “NIST Atomic Spectra Database (version 5.1),” National Institute of Standards and Technology, 2012 [Online]. Available: http://physics.nist.gov/asd .

A. W. Ali, “On Laser Air Breakdown, Threshold Power and Laser Generated Channel Length” (Naval Research Laboratory, 1983).

P. Kelley, ed. Physics of Quantum Electronics (McGraw-Hill, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Molecular structures of (left) 2-NT, (middle) 3-NT, and (right) 4-NT.

Fig. 2.
Fig. 2.

Molecular structures of (left) 2,4-DNT, (middle) 3,4-DNT, and (right) 2,6-DNT.

Fig. 3.
Fig. 3.

Left: NO energy levels and transitions. Right: NO spectrum for 532 nm multiphoton excitation.

Fig. 4.
Fig. 4.

Normalized UV luminescence spectra from laser-excited NO in nitrogen. The gas samples are excited with 226.4 nm and the spectra correspond to gate delays/widths of (left) 0 / 300 , (center) 50 / 300 , and (right) 1500 / 3000 ns , respectively.

Fig. 5.
Fig. 5.

Normalized luminescence spectra from laser-excited (left) 2 - NT / N 2 , (center) 2-NT/air, and (right) 4 - NT / N 2 for gate delays of (top) 0 and (bottom) 50 ns. Because of the much smaller fluorescence signal intensity in air compared to nitrogen, Raman lines from oxygen and nitrogen are apparent at 234 and 239 nm, respectively.

Fig. 6.
Fig. 6.

Normalized luminescence spectra from laser-excited (top left) 2 , 4 - DNT / N 2 , (top right) 3 , 4 - DNT / N 2 , (bottom left) 2,6- DNT / N 2 , and (bottom right) 2,4-DNT/air for a gate delay/width of 50 / 300 ns .

Fig. 7.
Fig. 7.

Luminescence spectra of laser-excited NB, benzene, toluene, and CO 2 . In all cases, the buffer gas is nitrogen and the gate delay/width is 50 / 300 ns .

Fig. 8.
Fig. 8.

Normalized luminescence spectrum from laser-excited 10 ppt 2-NT in N 2 with a gate delay of 50 ns.

Fig. 9.
Fig. 9.

Left: Image of glass slide with carbon deposit. Center: EDS spectrum. Right: Raman spectrum of carbon deposit.

Fig. 10.
Fig. 10.

Laser-excited luminescence spectra of (left) 2-NT/NO/air and (right) 2,4-DNT/NO/air. The gate delay/width are 1500 / 3000 ns .

Tables (9)

Tables Icon

Table 1. Franck–Condon Factors for NO Gamma Band [51]

Tables Icon

Table 2. Integrated Peak Intensity Ratios of NO in Nitrogen and Air for 236–237 and 247–248 nm Excited at 226.4 nm

Tables Icon

Table 3. Integrated Peak Intensity Ratios for 236–237 and 247–248 nm Excited at 226.4 nm

Tables Icon

Table 4. Integrated Peak Intensity Ratios for 236–237 and 247–248 nm Excited at 226.4 nm

Tables Icon

Table 5. Concentration Dependence for 2 - NT / N 2

Tables Icon

Table 6. Laser-Energy Dependence for 2 , 4 - DNT / N 2

Tables Icon

Table 7. Pressure Dependence for 2 , 4 - DNT / N 2

Tables Icon

Table 8. Integrated Peak Intensity Ratios for 236–237 and 247–248 nm Excited at 226.4 nm of 2,4-DNT in Ar and in N 2

Tables Icon

Table 9. Integrated Peak Intensity Ratios for Gas Samples Containing Extra NO

Metrics