Abstract

The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO2 laser absorption spectrometer (LAS) systems and their CO2 column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO2 measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis’ airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO2 absorption band. Atmospheric effects due to variations in CO2, solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO2 measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO2 differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO2 differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO2 column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO2 column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO2 absorption line), the accuracy of the τd measurements for surfaces similar to the playa of RRV, Nevada, will be better than 0.1% for 10 s averages. For other types of surfaces such as low-reflectivity snow and ice surfaces, the precision and bias errors will be within 0.23% and 0.1%, respectively. Including thin clouds with optical depths up to 1, the SNR of the τd measurements with 0.1 s integration period for surfaces similar to the playa of RRV, Nevada, will be greater than 94 and 65 for sideline positions placed +3 and +10pm, respectively, from the CO2 line center at 1571.112 nm. The CO2 column bias errors introduced by the thin clouds are 0.1% for cloud optical depth 0.4, but they could reach 0.5% for more optically thick clouds with optical depths up to 1. When the cloud and surface altitudes and scattering amplitudes are obtained from matched filter analysis, the cloud bias errors can be further reduced. These results indicate that the IM-CW LAS instrument approach when implemented in a dawn/dusk orbit can make accurate CO2 column measurements from space with preferential weighting across the mid to lower troposphere in support of a future ASCENDS mission.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignow, and H. L. Miller, eds. (Cambridge University, 2007).
  2. J. Willis, D. Roemmich, and B. Cornuelle, “Interannual variability in upper-ocean heat content, temperature, and thermosteric expansion on global scales,” J. Geophys. Res. 109, C12036 (2004).
    [CrossRef]
  3. B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
    [CrossRef]
  4. SOCCR, “The first state of carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle, synthesis and assessment product 2.2,” U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Asheville, North Carolina, 2007.
  5. National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).
  6. J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
    [CrossRef]
  7. R. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
    [CrossRef]
  8. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
    [CrossRef]
  9. S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
    [CrossRef]
  10. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
    [CrossRef]
  11. S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.
  12. R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
    [CrossRef]
  13. S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
    [CrossRef]
  14. M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
    [CrossRef]
  15. C. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
    [CrossRef]
  16. N. Lamquin, C. J. Stubenrauch, and J. Pelon, “Upper tropospheric humidity and cirrus geometrical and optical thickness: relationships inferred from 1 year of collocated AIRS and CALIPSO data,” J. Geophys. Res. 113, D00A08 (2008).
    [CrossRef]
  17. H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
    [CrossRef]
  18. O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
    [CrossRef]
  19. M. Dobbs, J. Pruitt, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for Earth, weather and exploration,” presented at the American Geophysical Union (AGU) Fall Meeting, A1194, San Francisco, California, 11–15 December2006.
  20. L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
    [CrossRef]
  21. V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
    [CrossRef]
  22. R. McClathey, R. Fenn, J. Selby, F. Voltz, and J. Garing, “Optical properties of the atmosphere,” AFCRL-72-0497 (Air Force Cambridge Research Laboratory, 1972).
  23. A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
    [CrossRef]
  24. Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
    [CrossRef]
  25. P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).
  26. P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).
  27. B. Lin, B. Wielicki, P. Minnis, and W. B. Rossow, “Estimation of water cloud properties from satellite microwave and optical measurements in oceanic environments. I: Microwave brightness temperature simulations,” J. Geophys. Res. 103, 3873–3886 (1998).
    [CrossRef]
  28. D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
    [CrossRef]
  29. D. Winker, “Accounting for multiple scattering in retrievals from space lidar,” Proc. SPIE 5059, 128–139 (2003).
    [CrossRef]
  30. J. Davis, “Consideration of atmospheric turbulence in laser system design,” Appl. Opt. 5, 139–147 (1966).
    [CrossRef]
  31. V. Thiermann and A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).
  32. G. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).
  33. M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
    [CrossRef]
  34. J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
    [CrossRef]
  35. A. Desai, P. Moorcroft, P. Bolstad, and K. Davis, “Regional carbon fluxes from an observationally constrained dynamic ecosystem model: impacts of disturbance, CO2 fertilization, and heterogeneous land cover,” J. Geophys. Res. 112, G01017 (2007).
    [CrossRef]
  36. W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
    [CrossRef]
  37. B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).
  38. Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
    [CrossRef]
  39. B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
    [CrossRef]

2013 (2)

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

2012 (3)

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

2011 (3)

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

2010 (3)

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

2009 (3)

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
[CrossRef]

2008 (3)

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

N. Lamquin, C. J. Stubenrauch, and J. Pelon, “Upper tropospheric humidity and cirrus geometrical and optical thickness: relationships inferred from 1 year of collocated AIRS and CALIPSO data,” J. Geophys. Res. 113, D00A08 (2008).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

2007 (3)

V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
[CrossRef]

A. Desai, P. Moorcroft, P. Bolstad, and K. Davis, “Regional carbon fluxes from an observationally constrained dynamic ecosystem model: impacts of disturbance, CO2 fertilization, and heterogeneous land cover,” J. Geophys. Res. 112, G01017 (2007).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

2006 (1)

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

2005 (1)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

2004 (1)

J. Willis, D. Roemmich, and B. Cornuelle, “Interannual variability in upper-ocean heat content, temperature, and thermosteric expansion on global scales,” J. Geophys. Res. 109, C12036 (2004).
[CrossRef]

2003 (2)

R. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef]

D. Winker, “Accounting for multiple scattering in retrievals from space lidar,” Proc. SPIE 5059, 128–139 (2003).
[CrossRef]

1999 (1)

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

1998 (1)

B. Lin, B. Wielicki, P. Minnis, and W. B. Rossow, “Estimation of water cloud properties from satellite microwave and optical measurements in oceanic environments. I: Microwave brightness temperature simulations,” J. Geophys. Res. 103, 3873–3886 (1998).
[CrossRef]

1992 (1)

P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).

1988 (1)

V. Thiermann and A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).

1973 (1)

C. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
[CrossRef]

1966 (1)

J. Davis, “Consideration of atmospheric turbulence in laser system design,” Appl. Opt. 5, 139–147 (1966).
[CrossRef]

Abshire, J.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

Abshire, J. B.

S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.

Agishev, R.

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Amediek, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Arduini, R.

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Auwera, J.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Baker, D. F.

S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.

Barbe, A.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Basilio, R.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Batet, O.

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

Beck, J.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Benner, D.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
[CrossRef]

Bernath, P.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Birk, M.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Bolstad, P.

A. Desai, P. Moorcroft, P. Bolstad, and K. Davis, “Regional carbon fluxes from an observationally constrained dynamic ecosystem model: impacts of disturbance, CO2 fertilization, and heterogeneous land cover,” J. Geophys. Res. 112, G01017 (2007).
[CrossRef]

Boudon, V.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Bouvet, M.

M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
[CrossRef]

Brogniez, G.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

Browell, E.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Browell, E. V.

S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.

Brown, L.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
[CrossRef]

Bruegge, C. J.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Campargue, A.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Chambers, L.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

Champion, J.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Chance, K.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Chepfer, H.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

Choi, Y.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Cisewski, M.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Coakley, J.

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Collatz, G.

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

Comeron, A.

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

Cornuelle, B.

J. Willis, D. Roemmich, and B. Cornuelle, “Interannual variability in upper-ocean heat content, temperature, and thermosteric expansion on global scales,” J. Geophys. Res. 109, C12036 (2004).
[CrossRef]

Coudert, L.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Dana, V.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Davis, J.

J. Davis, “Consideration of atmospheric turbulence in laser system design,” Appl. Opt. 5, 139–147 (1966).
[CrossRef]

Davis, K.

A. Desai, P. Moorcroft, P. Bolstad, and K. Davis, “Regional carbon fluxes from an observationally constrained dynamic ecosystem model: impacts of disturbance, CO2 fertilization, and heterogeneous land cover,” J. Geophys. Res. 112, G01017 (2007).
[CrossRef]

Day, J. O.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Desai, A.

A. Desai, P. Moorcroft, P. Bolstad, and K. Davis, “Regional carbon fluxes from an observationally constrained dynamic ecosystem model: impacts of disturbance, CO2 fertilization, and heterogeneous land cover,” J. Geophys. Res. 112, G01017 (2007).
[CrossRef]

Devi, V.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
[CrossRef]

Dios, F.

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

Disney, M.

M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
[CrossRef]

Dobbs, M.

M. Dobbs, J. Pruitt, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for Earth, weather and exploration,” presented at the American Geophysical Union (AGU) Fall Meeting, A1194, San Francisco, California, 11–15 December2006.

Dobler, J.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Dong, X.

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

Ehret, G.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Fairall, C.

P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).

Fally, S.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Fan, A.

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

Fan, T.-F.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

Feng, Z.

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

Fenn, R.

R. McClathey, R. Fenn, J. Selby, F. Voltz, and J. Garing, “Optical properties of the atmosphere,” AFCRL-72-0497 (Air Force Cambridge Research Laboratory, 1972).

Fix, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Flamant, C.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

Flamant, P. H.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

Flaud, J.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Flittner, D.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Gamache, R.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Garber, D.

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Garing, J.

R. McClathey, R. Fenn, J. Selby, F. Voltz, and J. Garing, “Optical properties of the atmosphere,” AFCRL-72-0497 (Air Force Cambridge Research Laboratory, 1972).

Garnier, A.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Gibson, G.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Goldman, A.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Gordon, I.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Gregory, D.

M. Dobbs, J. Pruitt, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for Earth, weather and exploration,” presented at the American Geophysical Union (AGU) Fall Meeting, A1194, San Francisco, California, 11–15 December2006.

Gross, B.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Hammerling, D.

S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.

Hancock, S.

M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
[CrossRef]

Harrison, F.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Heck, P.

P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Helmlinger, M.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Hirano, Y.

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

Hostetler, C.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Hu, Y.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

Imaki, M.

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

Ismail, S.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Jacquemart, D.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Josset, D.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Kameyama, S.

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

Kamilar, C.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Kataoka, F.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Kato, S.

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

Kawa, S.

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

Kawa, S. R.

S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.

Kawakami, S.

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

Kennedy, A.

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

Kiemle, C.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Kimura, T.

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

King, M.

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Kleiner, I.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Kohnle, A.

V. Thiermann and A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).

Kooi, S.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Kratz, D.

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Kuehn, R.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Kuze, A.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Lacome, N.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Lafferty, W.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Lamquin, N.

N. Lamquin, C. J. Stubenrauch, and J. Pelon, “Upper tropospheric humidity and cirrus geometrical and optical thickness: relationships inferred from 1 year of collocated AIRS and CALIPSO data,” J. Geophys. Res. 113, D00A08 (2008).
[CrossRef]

Lewis, P.

M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
[CrossRef]

Lin, B.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

B. Lin, B. Wielicki, P. Minnis, and W. B. Rossow, “Estimation of water cloud properties from satellite microwave and optical measurements in oceanic environments. I: Microwave brightness temperature simulations,” J. Geophys. Res. 103, 3873–3886 (1998).
[CrossRef]

Loeb, N.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Lucker, P.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Lukashin, C.

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

Mandin, J.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Mao, J.

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

Massie, S.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Matsunaga, T.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Mayor, S.

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

McClathey, R.

R. McClathey, R. Fenn, J. Selby, F. Voltz, and J. Garing, “Optical properties of the atmosphere,” AFCRL-72-0497 (Air Force Cambridge Research Laboratory, 1972).

McCurdy, J.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

McFarlane, S. A.

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

McGregor, D.

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

Menzies, R.

R. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef]

Michalak, A. M.

S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.

Mikhailenk, S.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Miller, C.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
[CrossRef]

Min, Q.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Minnis, P.

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

B. Lin, B. Wielicki, P. Minnis, and W. B. Rossow, “Estimation of water cloud properties from satellite microwave and optical measurements in oceanic environments. I: Microwave brightness temperature simulations,” J. Geophys. Res. 103, 3873–3886 (1998).
[CrossRef]

P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Mitomi, Y.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Mitra, P.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Moazzen-Ahmadi, N.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Moorcroft, P.

A. Desai, P. Moorcroft, P. Bolstad, and K. Davis, “Regional carbon fluxes from an observationally constrained dynamic ecosystem model: impacts of disturbance, CO2 fertilization, and heterogeneous land cover,” J. Geophys. Res. 112, G01017 (2007).
[CrossRef]

Moshary, F.

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

Nakajima, M.

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

Naumenko, O.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Nikitin, A.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

O’Brien, D. M.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

O’Dell, C. W.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Omar, A.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Orphal, J.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Osche, G.

G. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).

Pelon, J.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

N. Lamquin, C. J. Stubenrauch, and J. Pelon, “Upper tropospheric humidity and cirrus geometrical and optical thickness: relationships inferred from 1 year of collocated AIRS and CALIPSO data,” J. Geophys. Res. 113, D00A08 (2008).
[CrossRef]

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

Perevalov, V.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Perrin, A.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Platt, C.

C. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
[CrossRef]

Pollock, H.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Potter, G.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Predoi-Cross, A.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Prieto-Blanco, A.

M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
[CrossRef]

Pruitt, J.

M. Dobbs, J. Pruitt, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for Earth, weather and exploration,” presented at the American Geophysical Union (AGU) Fall Meeting, A1194, San Francisco, California, 11–15 December2006.

Reiff, K.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Rinsland, C.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Roemmich, D.

J. Willis, D. Roemmich, and B. Cornuelle, “Interannual variability in upper-ocean heat content, temperature, and thermosteric expansion on global scales,” J. Geophys. Res. 109, C12036 (2004).
[CrossRef]

Rossow, W. B.

B. Lin, B. Wielicki, P. Minnis, and W. B. Rossow, “Estimation of water cloud properties from satellite microwave and optical measurements in oceanic environments. I: Microwave brightness temperature simulations,” J. Geophys. Res. 103, 3873–3886 (1998).
[CrossRef]

Rotger, M.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Rothman, L.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Sakaizawa, D.

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

Santa-Maria, M.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Schuster, G.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Scritchfield, R.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Selby, J.

R. McClathey, R. Fenn, J. Selby, F. Voltz, and J. Garing, “Optical properties of the atmosphere,” AFCRL-72-0497 (Air Force Cambridge Research Laboratory, 1972).

Sharp, W.

M. Dobbs, J. Pruitt, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for Earth, weather and exploration,” presented at the American Geophysical Union (AGU) Fall Meeting, A1194, San Francisco, California, 11–15 December2006.

Shiomi, K.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Simeckova, M.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Skokan, M.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Smith, M.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Snider, J.

P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).

Stackhouse, P.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Stamnes, K.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Stubenrauch, C. J.

N. Lamquin, C. J. Stubenrauch, and J. Pelon, “Upper tropospheric humidity and cirrus geometrical and optical thickness: relationships inferred from 1 year of collocated AIRS and CALIPSO data,” J. Geophys. Res. 113, D00A08 (2008).
[CrossRef]

Sun, W.

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

Sun, X.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

Sung, K.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Suto, H.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Tashkun, S.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Taylor, T. E.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Tennyson, J.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Thiermann, V.

V. Thiermann and A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).

Toth, R.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
[CrossRef]

Tratt, D. M.

R. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef]

Trepte, C.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Trouillet, V.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

Ueno, S.

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

Urabe, T.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Vandaele, A.

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Vaughan, M.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Videen, G.

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

Voltz, F.

R. McClathey, R. Fenn, J. Selby, F. Voltz, and J. Garing, “Optical properties of the atmosphere,” AFCRL-72-0497 (Air Force Cambridge Research Laboratory, 1972).

Weaver, C.

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

Weimer, C.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Welch, T.

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Wielicki, B.

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

B. Lin, B. Wielicki, P. Minnis, and W. B. Rossow, “Estimation of water cloud properties from satellite microwave and optical measurements in oceanic environments. I: Microwave brightness temperature simulations,” J. Geophys. Res. 103, 3873–3886 (1998).
[CrossRef]

Wielicki, B. A.

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

Willis, J.

J. Willis, D. Roemmich, and B. Cornuelle, “Interannual variability in upper-ocean heat content, temperature, and thermosteric expansion on global scales,” J. Geophys. Res. 109, C12036 (2004).
[CrossRef]

Winker, D.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

D. Winker, “Accounting for multiple scattering in retrievals from space lidar,” Proc. SPIE 5059, 128–139 (2003).
[CrossRef]

Wirth, M.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Wu, C.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Xi, B.

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

Xu, K.-M.

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

Yang, P.

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Yoshida, M.

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

Young, D.

P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

Zhai, P.-W.

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

Appl. Opt. (5)

J. Dobler, F. Harrison, E. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous-wave 1.57 μm fiber laser lidar,” Appl. Opt. 52, 2874–2892 (2013).
[CrossRef]

R. Menzies and D. M. Tratt, “Differential laser absorption spectrometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high precision measurements,” Appl. Opt. 42, 6569–6577 (2003).
[CrossRef]

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, T. Kimura, and M. Nakajima, “Feasibility study on 1.6 μm continuous-wave modulation laser absorption spectrometer system for measurement of global CO2 concentration from a satellite,” Appl. Opt. 50, 2055–2068 (2011).
[CrossRef]

O. Batet, F. Dios, A. Comeron, and R. Agishev, “Intensity-modulated linear-frequency-modulated continuous-wave lidar for distributed media: fundamentals of technique,” Appl. Opt. 49, 3369–3379 (2010).
[CrossRef]

J. Davis, “Consideration of atmospheric turbulence in laser system design,” Appl. Opt. 5, 139–147 (1966).
[CrossRef]

Appl. Phys. B (2)

R. Agishev, B. Gross, F. Moshary, A. Gilerson, and S. Ahmed, “Atmospheric CW-FM-LD-RR ladar for trace-constituent detection: a concept development,” Appl. Phys. B 81, 695–703 (2005).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Spaceborne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Atmos. Chem. Phys. (2)

B. Lin, L. Chambers, P. Stackhouse, B. Wielicki, Y. Hu, P. Minnis, N. Loeb, W. Sun, G. Potter, Q. Min, G. Schuster, and T.-F. Fan, “Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance,” Atmos. Chem. Phys. 10, 1923–1930 (2010).
[CrossRef]

Y. Hu, K. Stamnes, M. Vaughan, J. Pelon, C. Weimer, C. Wu, M. Cisewski, W. Sun, P. Yang, B. Lin, A. Omar, D. Flittner, C. Hostetler, C. Trepte, D. Winker, G. Gibson, and M. Santa-Maria, “Sea surface wind speed estimation from space-based lidar measurements,” Atmos. Chem. Phys. 8, 3593–3601 (2008).
[CrossRef]

Geophys. Res. Lett. (2)

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, and P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[CrossRef]

B. Lin, K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun, “Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations,” Geophys. Res. Lett. 34, L14804 (2007).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (2)

A. Kuze, D. M. O’Brien, T. E. Taylor, J. O. Day, C. W. O’Dell, F. Kataoka, M. Yoshida, Y. Mitomi, C. J. Bruegge, H. Pollock, R. Basilio, M. Helmlinger, T. Matsunaga, S. Kawakami, K. Shiomi, T. Urabe, and H. Suto, “Vicarious calibration of the GOSAT sensors using the Railroad Valley desert playa,” IEEE Trans. Geosci. Remote Sens. 49, 1781–1795 (2011).
[CrossRef]

M. Disney, P. Lewis, M. Bouvet, A. Prieto-Blanco, and S. Hancock, “Quantifying surface reflectivity for spaceborne lidar via two independent methods,” IEEE Trans. Geosci. Remote Sens. 47, 3262–3271 (2009).
[CrossRef]

J. Appl. Meteorol. (1)

P. Minnis, P. Heck, D. Young, C. Fairall, and J. Snider, “Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE,” J. Appl. Meteorol. 31, 317–339 (1992).

J. Atmos. Sci. (1)

C. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
[CrossRef]

J. Climate (1)

B. Lin, B. A. Wielicki, P. Minnis, L. Chambers, K.-M. Xu, Y. Hu, and A. Fan, “The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite,” J. Climate 19, 5745–5761 (2006).

J. Geophys. Res. (7)

Z. Feng, X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, “Life cycle of midlatitude deep convective systems in a Lagrangian framework,” J. Geophys. Res. 117, D23201 (2012).
[CrossRef]

A. Desai, P. Moorcroft, P. Bolstad, and K. Davis, “Regional carbon fluxes from an observationally constrained dynamic ecosystem model: impacts of disturbance, CO2 fertilization, and heterogeneous land cover,” J. Geophys. Res. 112, G01017 (2007).
[CrossRef]

W. Sun, G. Videen, S. Kato, B. Lin, C. Lukashin, and Y. Hu, “A study of subvisual clouds and their radiation effect with a synergy of CERES, MODIS, CALIPSO, and AIRS data,” J. Geophys. Res. 116, D22207 (2011).
[CrossRef]

B. Lin, B. Wielicki, P. Minnis, and W. B. Rossow, “Estimation of water cloud properties from satellite microwave and optical measurements in oceanic environments. I: Microwave brightness temperature simulations,” J. Geophys. Res. 103, 3873–3886 (1998).
[CrossRef]

D. Josset, J. Pelon, A. Garnier, Y. Hu, M. Vaughan, P.-W. Zhai, R. Kuehn, and P. Lucker, “Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo,” J. Geophys. Res. 117, D05207 (2012).
[CrossRef]

N. Lamquin, C. J. Stubenrauch, and J. Pelon, “Upper tropospheric humidity and cirrus geometrical and optical thickness: relationships inferred from 1 year of collocated AIRS and CALIPSO data,” J. Geophys. Res. 113, D00A08 (2008).
[CrossRef]

J. Willis, D. Roemmich, and B. Cornuelle, “Interannual variability in upper-ocean heat content, temperature, and thermosteric expansion on global scales,” J. Geophys. Res. 109, C12036 (2004).
[CrossRef]

J. Mol. Spectrosc. (1)

V. Devi, D. Benner, L. Brown, C. Miller, and R. Toth, “Line mixing and speed dependence in CO2 at 6348 cm−1: positions, intensities and air- and self-broadening derived with constrained multispectrum analysis,” J. Mol. Spectrosc. 242, 90–117 (2007).
[CrossRef]

J. Phys. D (1)

V. Thiermann and A. Kohnle, “A simple model for the structure constant of temperature fluctuations in the lower atmosphere,” J. Phys. D 21, S37–S40 (1988).

J. Quant. Spectrosc. Radiat. Transfer (1)

L. Rothman, I. Gordon, A. Barbe, D. Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J. Mandin, S. Massie, S. Mikhailenk, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Simeckova, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and J. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Opt. Lett. (2)

S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Development of 1.6 μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing,” Opt. Lett. 34, 1513–1515 (2009).
[CrossRef]

M. Imaki, S. Kameyama, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima, “Laser absorption spectrometer using frequency chirped intensity modulation at 1.57 μm wavelength for CO2 measurement,” Opt. Lett. 37, 2688–2690 (2012).
[CrossRef]

Proc. SPIE (2)

D. Winker, “Accounting for multiple scattering in retrievals from space lidar,” Proc. SPIE 5059, 128–139 (2003).
[CrossRef]

J. Beck, J. McCurdy, M. Skokan, C. Kamilar, R. Scritchfield, T. Welch, P. Mitra, X. Sun, J. Abshire, and K. Reiff, “A highly sensitive multi-element HgCdTe e-APD detector for IPDA lidar applications,” Proc. SPIE 8739, 87390V (2013).
[CrossRef]

Tellus B (1)

S. Kawa, J. Mao, J. Abshire, G. Collatz, X. Sun, and C. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus B 62, 759–769 (2010).
[CrossRef]

Other (8)

Intergovernmental Panel on Climate Change, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignow, and H. L. Miller, eds. (Cambridge University, 2007).

SOCCR, “The first state of carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle, synthesis and assessment product 2.2,” U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Asheville, North Carolina, 2007.

National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).

S. R. Kawa, D. F. Baker, D. Hammerling, J. B. Abshire, E. V. Browell, and A. M. Michalak, and the ASCENDS Requirements Definition Team, “Observing system simulations for the NASA ASCENDS lidar CO2 mission concept,” presented at the International Workshop on Greenhouse Gas Measurements from Space (IWGGMS Workshop), Pasadena, California, 18–20 June2012.

M. Dobbs, J. Pruitt, D. Gregory, and W. Sharp, “Matched filter enhanced fiber-based lidar for Earth, weather and exploration,” presented at the American Geophysical Union (AGU) Fall Meeting, A1194, San Francisco, California, 11–15 December2006.

G. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).

P. Minnis, D. Young, D. Kratz, J. Coakley, M. King, D. Garber, P. Heck, S. Mayor, and R. Arduini, “Cloud optical property retrieval,” Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document: Subsystem 4.3 (NASA Langley Research Center, 1997) ( http://ceres.larc.nasa.gov/documents/ATBD/pdf/r2_2/ceres-atbd2.2-s4.3.pdf ).

R. McClathey, R. Fenn, J. Selby, F. Voltz, and J. Garing, “Optical properties of the atmosphere,” AFCRL-72-0497 (Air Force Cambridge Research Laboratory, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Idealized case of intensity-modulated power returns from a target at 12 km range with an intermediate backscatter of equal power strength in the middle. Noise level is assumed to be the same as signal powers. The DC components for all signals are removed after the detector (b)–(d). (a) Returned signal powers from the target without noises for individual channels before detection, (b) detected signal without noises from the target of the three channels, (c) recorded returned signal, and (d) matched filter output.

Fig. 2.
Fig. 2.

Schematic overview of the simulation program for atmospheric CO2 column density measurements.

Fig. 3.
Fig. 3.

Diagram of simulated IM-CW LAS system. Solid brown curves represent optical fibers, and black curves represent electrical wires. Individual elements are color-coded to be consistent with their corresponding modules in Fig. 2.

Fig. 4.
Fig. 4.

Comparison of model-predicted LAS returned powers with MFLL measurements at the test range during summer 2012 for standard targets with various albedos.

Fig. 5.
Fig. 5.

Comparison of model-simulated results with observations for the RRV playa flight on 3 August 2011. Data analyzed are for the flights at 6.1, 7.6, and 9.1 km altitudes. (a), (b) Grand power ratios and (c), (d) differential optical depths are shown.

Fig. 6.
Fig. 6.

Simulated results for spaceborne IM-CW LAS instrument for different surface reflectance values. The (a) SNR and (b) relative bias error values are for CO2 differential optical depths (τd).

Fig. 7.
Fig. 7.

Simulated results for spaceborne instrument under thin cirrus cloud conditions. The (a) SNR and (b) relative bias error values of CO2 differential optical depth (τd) are calculated for the surface with the reflectance of RRV, Nevada.

Tables (3)

Tables Icon

Table 1. Basic Instrument Information for Airborne IM-CW LAS System

Tables Icon

Table 2. Simulated Results of Grand Power Ratios Ψ and Differential Optical Depths τd Compared with LAS Remote Measurements for Flight Altitudes of 6.1, 7.6, and 9.1 km above the RRV Playa on 3 August 2011a

Tables Icon

Table 3. Basic Detection Subsystem Information for Simulated Space IM-CW LAS System

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Prec(λ)=k=0KP(λ,Rk),
Pr(λ)=GP(λ)P(λ,R0)=GP(λ)ρ(λ)Pt(λ)ArTc2(λ)Tv2(λ)Tatm2(λ)ToπR02,
Tatm=exp(τa)k=1Kexp(SEB(k)χβ(k)δz(k)),
Ψ=Pr(λ0)Pr(λ1)×Pref(λ1)Pref(λ0)=GP(λ0)Pt(λ0)Tc2(λ0)Tv2(λ0)GP(λ1)Pt(λ1)Tc2(λ1)Tv2(λ1)×Pref(λ1)Pref(λ0),
Pref(λ1)Pref(λ0)=GP(λ1)Pt(λ1)GP(λ0)Pt(λ0).
Ψ=Tc2(λ0)Tv2(λ0)Tc2(λ1)Tv2(λ1).
Ψ=Tc2(λ0)Tc2(λ1)=e2(τ0τ1)=e2τd,
0.5Ln(Ψ)=0.5Ln(Pr(λ0)Pr(λ1)×Pref(λ1)Pref(λ0))=τd,
Pt(λ,t)=Pt0(λ)[1+Dmcos(ωλ0t+0.5αt2+ϕλ0)]t=0toTf,
Prec(λ,t)=Σk=0Kεk(λ){1+Dmcos[ωλ0(t2Rk/c)+0.5α(t2Rk/c)2+φλ0]},
Pt(λ,t)=GampPdfb(λ)(1+DmMmodu(λ,t))+Namp(λ,t),
γc=(1exp(2χτc))/(2χSEBc),
IR(t)=Pr(t)q/(hc)GAPDηqλQd,
IdDS=(2qFGAPD2Idark)1/2,
IdRS=(2qFGAPDIRrms)1/2,
IdT=(4kBTd/Rd)1/2,
IaN=sqrt{Iin2+Vin2[1+(2πfmRfCDA))2]/Rf2},
MP(λ,J)=V(j)Mf(λ,Jj),

Metrics