Abstract

Virtual tissues (phantoms) are widely used for performance evaluation of imaging systems. Specific design of the phantom is necessary for the correct assessment of a system’s parameters. In an effort to reduce the amount of time and energy spent making application-oriented phantoms, we describe procedures to make epoxy-resin solid phantoms based on Mie scattering theory, with two different scatterers: polystyrene and gold microspheres. The phantoms are specifically designed to be used in two applications: (a) the gold microspheres solid phantoms are used to estimate the point-spread function (PSF) of an optical coherence tomography (OCT) system, and (b) the polystyrene solid phantom are used to evaluate the performance of an OCT-images optical properties extraction (OPE) algorithm. Phantoms with differing combination of materials have been tested to achieve the most suitable combination for producing an accurate PSF for application (a) and a valid evaluation/parameter optimization of the algorithm in application (b). An en face time-domain dynamic focus OCT is used for imaging.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Firbank, “The design, calibration and usage of a solid scattering and absorbing phantom for near infrared spectroscopy,” Ph.D thesis (University of London, 1994).
  2. M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
    [CrossRef]
  3. Medical physics homepage: http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/phantoms.htm .
  4. S. Madsen, M. Patterson, and B. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
    [CrossRef]
  5. U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
    [CrossRef]
  6. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35, 2269–2271 (2010).
    [CrossRef]
  7. C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008).
    [CrossRef]
  8. B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010).
    [CrossRef]
  9. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
    [CrossRef]
  10. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010).
    [CrossRef]
  11. M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).
  12. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [CrossRef]
  13. G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3, 1381–1398 (2012).
    [CrossRef]
  14. E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 2003).
  15. C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.
  16. J. Gordon, “Simple method for approximating Mie scattering,” J. Opt. Soc. Am. A 2, 156–159 (1985).
    [CrossRef]
  17. M. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
    [CrossRef]
  18. Schott, “TIE-29: refractive index and dispersion, technical information,” Schott AG, 2007.
  19. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
    [CrossRef]
  20. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012).
    [CrossRef]
  21. Epoxy-resin provider, http://www.melford.co.uk .
  22. Agarose provider, http://www.melford.co.uk .
  23. G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
    [CrossRef]
  24. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics Extended (Wiley, 2010).
  25. K. W. Lee and J. P. Kim, “Effect of ultrasound on disperse dye particle size,” Text. Res. J. 71, 395–398 (2001).
    [CrossRef]
  26. M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” Proceedings of International Conference on Microscopy, Microscience (2010), p. 152.
  27. M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
    [CrossRef]
  28. M. R. N. Avanaki, A. Hojjat, and A. Gh. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
    [CrossRef]
  29. S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm,” Appl. Opt. 52, 5663–5670 (2013).
    [CrossRef]
  30. M. Hughes and A. Gh. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
    [CrossRef]
  31. P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” National Physical Labratorary (NLP) report (August2009).
  32. M. Avanaki, P. P. Laissue, T. J. Eom, A. Gh. Podoleanu, and A. Hojjatoleslami, “Speckle reduction using an artificial neural network algorithm,” Appl. Opt. 52, 5050–5057 (2013).
    [CrossRef]
  33. M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
    [CrossRef]
  34. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens–Fresnel principle,” J. Opt. Soc. Am. A 17, 484–490 (2000).
    [CrossRef]
  35. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.
  36. M. R. N. Avanaki, A. Hojjatoleslami, and A. Gh. Podoleanu, “Multilayer tissue-like optical phantom; a model for skin in optical coherence tomography imaging,” International Labmate online journal, microscopy focus section (November 2010).
  37. F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
    [CrossRef]
  38. G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
    [CrossRef]

2013 (4)

2012 (3)

G. Lamouche, B. F. Kennedy, K. M. Kennedy, C.-E. Bisaillon, A. Curatolo, G. Campbell, V. Pazos, and D. D. Sampson, “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomed. Opt. Express 3, 1381–1398 (2012).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

2010 (5)

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010).
[CrossRef]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010).
[CrossRef]

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35, 2269–2271 (2010).
[CrossRef]

2009 (2)

M. R. N. Avanaki, A. Hojjat, and A. Gh. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

M. Hughes and A. Gh. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

2008 (1)

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008).
[CrossRef]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

2005 (1)

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

2003 (1)

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

2001 (1)

K. W. Lee and J. P. Kim, “Effect of ultrasound on disperse dye particle size,” Text. Res. J. 71, 395–398 (2001).
[CrossRef]

2000 (1)

1997 (1)

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

1996 (1)

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

1995 (1)

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

1992 (1)

S. Madsen, M. Patterson, and B. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

1985 (1)

Aalders, M. C.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

Aber, A.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Agrawal, A.

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35, 2269–2271 (2010).
[CrossRef]

M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).

Andersen, P. E.

Avanaki, M.

Avanaki, M. R. N.

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm,” Appl. Opt. 52, 5663–5670 (2013).
[CrossRef]

M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012).
[CrossRef]

M. R. N. Avanaki, A. Hojjat, and A. Gh. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” Proceedings of International Conference on Microscopy, Microscience (2010), p. 152.

M. R. N. Avanaki, A. Hojjatoleslami, and A. Gh. Podoleanu, “Multilayer tissue-like optical phantom; a model for skin in optical coherence tomography imaging,” International Labmate online journal, microscopy focus section (November 2010).

Ballini, J.-P.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

Bisaillon, C. E.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008).
[CrossRef]

Bisaillon, C.-E.

Bohren, C.

C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.

Bouma, B. E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Braichotte, D.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

Braudo, A.

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” Proceedings of International Conference on Microscopy, Microscience (2010), p. 152.

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Campbell, G.

Cernat, R.

M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
[CrossRef]

Chen, Y.

M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).

Cheng, S.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

Connors, M.

M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).

Curatolo, A.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

Delpy, D. T.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

Drezek, R.

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett. 35, 2269–2271 (2010).
[CrossRef]

M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).

Dufour, M.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008).
[CrossRef]

Eddins, S. L.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

Eom, T. J.

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

Ferguson, R. A.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010).
[CrossRef]

P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” National Physical Labratorary (NLP) report (August2009).

Firbank, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

M. Firbank, “The design, calibration and usage of a solid scattering and absorbing phantom for near infrared spectroscopy,” Ph.D thesis (University of London, 1994).

Gilani, N.

Goderie, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Gonzalez, R. C.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

Gonzalo, N.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Gordon, J.

Grimwood, A.

Grosenick, D.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

Halliday, D.

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics Extended (Wiley, 2010).

Hart, C.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010).
[CrossRef]

P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” National Physical Labratorary (NLP) report (August2009).

Hecht, E.

E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 2003).

Hojjat, A.

M. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Avanaki, A. Hojjat, and A. Gh. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

Hojjatoleslami, A.

M. Avanaki, P. P. Laissue, T. J. Eom, A. Gh. Podoleanu, and A. Hojjatoleslami, “Speckle reduction using an artificial neural network algorithm,” Appl. Opt. 52, 5050–5057 (2013).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” Proceedings of International Conference on Microscopy, Microscience (2010), p. 152.

M. R. N. Avanaki, A. Hojjatoleslami, and A. Gh. Podoleanu, “Multilayer tissue-like optical phantom; a model for skin in optical coherence tomography imaging,” International Labmate online journal, microscopy focus section (November 2010).

Hojjatoleslami, S. A.

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm,” Appl. Opt. 52, 5663–5670 (2013).
[CrossRef]

M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Hu, X. H.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Huffman, D.

C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.

Hughes, M.

M. Hughes and A. Gh. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

Jacobs, K. M.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Jones, C.

M. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Kennedy, B. F.

Kennedy, K. M.

Kim, J. P.

K. W. Lee and J. P. Kim, “Effect of ultrasound on disperse dye particle size,” Text. Res. J. 71, 395–398 (2001).
[CrossRef]

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

Koljenovic´, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Laissue, P. P.

Lamouche, G.

Lee, K. W.

K. W. Lee and J. P. Kim, “Effect of ultrasound on disperse dye particle size,” Text. Res. J. 71, 395–398 (2001).
[CrossRef]

Liang, C.-P.

M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).

Liu, Y.

Loitsch, S.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010).
[CrossRef]

Lu, J. Q.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Ma, X.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Maciejko, R.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008).
[CrossRef]

Madsen, S.

S. Madsen, M. Patterson, and B. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

McLaughlin, R. A.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010).
[CrossRef]

Monchalin, J. P.

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008).
[CrossRef]

Nasiri-Avanaki, M. R. N.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Oda, M.

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

Okamura, T.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Oosterhuis, J. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Pasterkamp, G.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

Patterson, M.

S. Madsen, M. Patterson, and B. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

Pazos, V.

Pfefer, J.

M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).

Pfefer, T. J.

Podoleanu, A. Gh.

S. A. Hojjatoleslami, M. R. N. Avanaki, and A. Gh. Podoleanu, “Image quality improvement in optical coherence tomography using Lucy–Richardson deconvolution algorithm,” Appl. Opt. 52, 5663–5670 (2013).
[CrossRef]

M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
[CrossRef]

M. Avanaki, P. P. Laissue, T. J. Eom, A. Gh. Podoleanu, and A. Hojjatoleslami, “Speckle reduction using an artificial neural network algorithm,” Appl. Opt. 52, 5050–5057 (2013).
[CrossRef]

M. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

M. Hughes and A. Gh. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

M. R. N. Avanaki, A. Hojjat, and A. Gh. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” Proceedings of International Conference on Microscopy, Microscience (2010), p. 152.

M. R. N. Avanaki, A. Hojjatoleslami, and A. Gh. Podoleanu, “Multilayer tissue-like optical phantom; a model for skin in optical coherence tomography imaging,” International Labmate online journal, microscopy focus section (November 2010).

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

Regar, E.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Resnick, R.

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics Extended (Wiley, 2010).

Rigby, P.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010).
[CrossRef]

Rinneberg, H.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

Sampson, D. D.

Sassoon, D. M. B.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

Schofield, J.

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Schofield, J. B.

Schott,

Schott, “TIE-29: refractive index and dispersion, technical information,” Schott AG, 2007.

Schubert, F.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

Scolaro, L.

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010).
[CrossRef]

Serruys, P. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Sira, M.

M. Avanaki, A. Gh. Podoleanu, J. B. Schofield, C. Jones, M. Sira, Y. Liu, and A. Hojjat, “Quantitative evaluation of scattering in optical coherence tomography skin images using the extended Huygens–Fresnel theorem,” Appl. Opt. 52, 1574–1580 (2013).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Sukowski, U.

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

Tadrous, P. J.

M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
[CrossRef]

Tatla, T.

M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
[CrossRef]

Tearney, G. J.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Thrane, L.

Tomlins, P. H.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010).
[CrossRef]

P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” National Physical Labratorary (NLP) report (August2009).

Utke, N.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

van den Bergh, H.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

van der Steen, A. F. W.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

van Leenders, G. L. J. H.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

van Noorden, S.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

van Soest, G.

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

Wagnières, G.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

Walker, J.

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics Extended (Wiley, 2010).

Wilson, B.

S. Madsen, M. Patterson, and B. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

Woods, R. E.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

Woolliams, P. D.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010).
[CrossRef]

P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” National Physical Labratorary (NLP) report (August2009).

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Yura, H. T.

Zajac, A.

E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 2003).

Zellweger, M.

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

Appl. Opt. (4)

Biomed. Opt. Express (1)

Electron. Lett. (1)

M. Hughes and A. Gh. Podoleanu, “Simplified dynamic focus method for time domain OCT,” Electron. Lett. 45, 623–624 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. R. N. Avanaki, R. Cernat, P. J. Tadrous, T. Tatla, A. Gh. Podoleanu, and S. A. Hojjatoleslami, “Spatial compounding algorithm for speckle reduction of dynamic focus OCT images,” IEEE Photon. Technol. Lett. 25, 1439–1442 (2013).
[CrossRef]

IEEE Trans. Med. Imaging (1)

F. J. van der Meer, D. J. Faber, D. M. B. Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24, 1369–1376 (2005).
[CrossRef]

J. Biomed. Opt. (4)

G. van Soest, T. Goderie, E. Regar, S. Koljenović, G. L. J. H. van Leenders, N. Gonzalo, S. van Noorden, T. Okamura, B. E. Bouma, G. J. Tearney, J. W. Oosterhuis, P. W. Serruys, and A. F. W. van der Steen, “Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging,” J. Biomed. Opt. 15, 011105 (2010).
[CrossRef]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[CrossRef]

B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby, and D. D. Sampson, “Fibrin phantom for use in optical coherence tomography,” J. Biomed. Opt. 15, 030507 (2010).
[CrossRef]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15, 025001 (2010).
[CrossRef]

J. Mod. Opt. (1)

M. R. N. Avanaki, A. Hojjat, and A. Gh. Podoleanu, “Investigation of computer-based skin cancer detection using optical coherence tomography,” J. Mod. Opt. 56, 1536–1544 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Phys. Med. Biol. (6)

G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. van den Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415 (1997).
[CrossRef]

M. Firbank, M. Oda, and D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995).
[CrossRef]

S. Madsen, M. Patterson, and B. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef]

U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg, “Preparation of solid phantoms with defined scattering and absorption properties for optical tomography,” Phys. Med. Biol. 41, 1823–1844 (1996).
[CrossRef]

C. E. Bisaillon, G. Lamouche, R. Maciejko, M. Dufour, and J. P. Monchalin, “Deformable and durable phantoms with controlled density of scatterers,” Phys. Med. Biol. 53, N237 (2008).
[CrossRef]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Proc. SPIE (2)

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Phantoms for performance assessment of optical coherence tomography systems,” Proc. SPIE 8229, 82290W (2012).
[CrossRef]

M. R. N. Nasiri-Avanaki, A. Aber, S. A. Hojjatoleslami, M. Sira, J. Schofield, C. Jones, and A. Gh. Podoleanu, “Dynamic focus optical coherence tomography: feasibility for improved basal cell carcinoma investigation,” Proc. SPIE 8225, 82252J (2012).
[CrossRef]

Text. Res. J. (1)

K. W. Lee and J. P. Kim, “Effect of ultrasound on disperse dye particle size,” Text. Res. J. 71, 395–398 (2001).
[CrossRef]

Other (13)

M. R. N. Avanaki, A. Hojjatoleslami, A. Braudo, and A. Gh. Podoleanu, “Optical parameter extraction towards skin cancer diagnosis,” Proceedings of International Conference on Microscopy, Microscience (2010), p. 152.

M. Firbank, “The design, calibration and usage of a solid scattering and absorbing phantom for near infrared spectroscopy,” Ph.D thesis (University of London, 1994).

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics Extended (Wiley, 2010).

Schott, “TIE-29: refractive index and dispersion, technical information,” Schott AG, 2007.

Epoxy-resin provider, http://www.melford.co.uk .

Agarose provider, http://www.melford.co.uk .

Medical physics homepage: http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/phantoms.htm .

E. Hecht and A. Zajac, Optics, 4th ed. (Addison-Wesley, 2003).

C. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” Research Supported by the University of Arizona and Institute of Occupational and Environmental Health (Wiley-Interscience, 1983), p. 541.

M. Connors, A. Agrawal, C.-P. Liang, Y. Chen, R. Drezek, and J. Pfefer, “Characterizing the point spread function of retinal OCT devices with a model eye-based phantom,” in CLEO: Applications and Technology (Optical Society of America, 2011).

P. H. Tomlins, R. A. Ferguson, C. Hart, and P. D. Woolliams, “Point-spread function phantoms for optical coherence tomography,” National Physical Labratorary (NLP) report (August2009).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB (Gatesmark, 2009), Vol. 2.

M. R. N. Avanaki, A. Hojjatoleslami, and A. Gh. Podoleanu, “Multilayer tissue-like optical phantom; a model for skin in optical coherence tomography imaging,” International Labmate online journal, microscopy focus section (November 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

DF-OCT setup. SLD, superluminescent diode; BD, balance detection photodetector unit; EI, electronic conditioning signal interface; C1 and C2, 2×2 coupler; CL1, CL2, and CL3, collimator lens; MPC, mirror positioning controller; PC1 and PC2, polarization controller; TS, translation stage; M, microscope objective; OF, optical fiber.

Fig. 2.
Fig. 2.

B-scan images from epoxy-resin solid monosized particle phantoms obtained by DF-OCT. Image size is 0.5mmlateral×0.25mm in depth (as measured in air). (a) The scattererers are gold microspheres of 3±0.02μm diameter. (b) Image taken by an optical microscope (from Zenith) from the phantom in (a). (c) The scatterer is polystyrene microsphere of 6±0.1μm diameter. The squares on the images are exploded views of a 60μm×60μm area showing the difference between the spots in the images of the gold and polystyrene embedded phantoms. (d) Image taken by the optical microscope from the phantom in (c).

Fig. 3.
Fig. 3.

Spots chosen from the images in Fig. 2. (a) The scatterer is a single gold microsphere of approximately 3 μm diameter. (b) The scatterers are polystyrene microspheres of approximately 6 μm diameter.

Fig. 4.
Fig. 4.

(a) Averaged PSF image generated from the reliable spots on the averaged OCT C-scan image obtained from the phantom described in Section 2 at a depth of 100 μm. (b) 3D representation of the PSF of the OCT system after smoothing and thresholding.

Fig. 5.
Fig. 5.

(a) Averaged C-scan image acquired at a depth of 100 μm from the fingertip of a 28-year-old Asian male (type II). (b) Enhanced image after applying a Lucy–Richardson deconvolution algorithm using the processed averaged PSF image. The orange arrows indicate the region where the details of the structure were improved. The number of iterations was 25.

Fig. 6.
Fig. 6.

Photographs of the constructed phantoms using polystyrene microspheres embedded in epoxy resin with the concentrations of scatterer (a) 0%; (b) 0.012%; (c) 0.12%; (d) 0.56%. The image underneath each phantom photograph is the OCT B-scan image of that phantom taken by the DF-OCT. The size of the B-scan images is 100μm(lateral)×100μm (in depth), measured in air.

Tables (3)

Tables Icon

Table 1. Quantitative Evaluation of the Deconvolution Results Using 25 Iterations

Tables Icon

Table 2. Materials Used in the Construction of Phantoms Nos. 1–4 and the Concentration Percentage of Polystyrene Microspheres in the Principle Matrix Material

Tables Icon

Table 3. Comparison Between Scattering Coefficients Obtained from Mie Theory and the OPE Software Applied to the OCT B-Scan Images in Fig. 5 with Scatterer Concentrations of 0%, 0.012%, 0.12%, and 0.56%

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n=1+aλ2/(λ2b),
an=2ann2=2.
f(x,y)h(x,y)=g(x,y).

Metrics