Abstract

A simple fast line scan microscopic imaging approach based on a wavelength–space–time mapping technique has been proposed. With a lab-made subpicosecond pulse laser with 10 dB bandwidth of 12 nm, we experimentally demonstrate a free-space optical apparatus designed for fast line scan imaging of microscopic objects. This system has a spatial resolution of 22 μm, field-of-view of 2.5 mm, and line scan rate of 20.9 MHz. By imaging a modified unitraveling carrier photodetector, we demonstrate the application of semiconductor device inspection for speeding up quality control.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
    [CrossRef]
  2. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
    [CrossRef]
  3. L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).
  4. K. Licha, “Contrast agents for optical imaging,” Top. Curr. Chem. 222, 1–29 (2002).
    [CrossRef]
  5. T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
    [CrossRef]
  6. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
    [CrossRef]
  7. K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
    [CrossRef]
  8. T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
    [CrossRef]
  9. D. R. Solli, C. Roper, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [CrossRef]
  10. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
    [CrossRef]
  11. J. V. Watson, Introduction to Flow Cytometry (Cambridge University, 2004).
  12. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
    [CrossRef]
  13. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [CrossRef]
  14. V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-Haul WDM systems,” J. Lightwave Technol. 20, 409–416 (2002).
    [CrossRef]
  15. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
    [CrossRef]
  16. T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
    [CrossRef]
  17. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picoseconds supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
    [CrossRef]
  18. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
  19. H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
    [CrossRef]
  20. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
    [CrossRef]
  21. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
    [CrossRef]

2013 (2)

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[CrossRef]

2012 (2)

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
[CrossRef]

2011 (2)

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picoseconds supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[CrossRef]

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

2010 (1)

2009 (2)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

2008 (1)

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

2007 (2)

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[CrossRef]

D. R. Solli, C. Roper, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef]

2006 (1)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
[CrossRef]

2005 (3)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

2004 (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

2002 (3)

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).

K. Licha, “Contrast agents for optical imaging,” Top. Curr. Chem. 222, 1–29 (2002).
[CrossRef]

V. E. Perlin and H. G. Winful, “On distributed Raman amplification for ultrabroad-band long-Haul WDM systems,” J. Lightwave Technol. 20, 409–416 (2002).
[CrossRef]

Adam, J.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Aizpurua, J.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

Ayazi, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Basiji, D. A.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[CrossRef]

Bock, H.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Brown, R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Capewell, D.

Cardinal, F. L.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Carlo, D. D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Ch’ng, Y. H.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Chen, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Chen, H.

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

Chung, S.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Eggeling, C.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Fard, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

Goda, K.

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Gossett, D. R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Grotjohann, T.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

Hell, S. W.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

IIaria, T.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Jakobs, S.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Jalali, B.

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

D. R. Solli, C. Roper, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef]

Jiang, S.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Jin, Y.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

Josephson, L.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).

Kara, P.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Kim, C.

Kircher, M. F.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).

Koonath, P.

D. R. Solli, C. Roper, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef]

Lau, A. K. S.

Leutenegger, M.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Liang, L.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[CrossRef]

Liao, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Licha, K.

K. Licha, “Contrast agents for optical imaging,” Top. Curr. Chem. 222, 1–29 (2002).
[CrossRef]

Liu, Y.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Luo, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Mahjoubfar, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Mahmood, U.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).

Malik, O.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Morrissey, P.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[CrossRef]

Ohki, K.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Ortyn, W. E.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[CrossRef]

Perlin, V. E.

Petty, H. R.

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
[CrossRef]

Qiu, Y.

Quake, S. R.

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

Reid, R. C.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Roper, C.

D. R. Solli, C. Roper, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef]

Sarkhosh, N.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

D. R. Solli, C. Roper, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef]

Sollier, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Squires, T. M.

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

Tang, Y.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).

Tsia, K. K.

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1 μm,” Opt. Lett. 37, 3330–3332 (2012).
[CrossRef]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picoseconds supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Urban, N. T.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Venkatachalam, V.

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[CrossRef]

Wang, C.

H. Chen, C. Wang, A. Yazaki, C. Kim, K. Goda, and B. Jalali, “Ultrafast web inspection with hybrid dispersion laser scanner,” Appl. Opt. 52, 4072–4076 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Watson, J. V.

J. V. Watson, Introduction to Flow Cytometry (Cambridge University, 2004).

Weissleder, R.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).

Willing, K. I.

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

Winful, H. G.

Wong, K. K. Y.

Wong, T. T. W.

Yakar, A. B.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

Yang, J. L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

Yazaki, A.

Zhang, C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picoseconds supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
[CrossRef]

Zhang, L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Zhang, R.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Zhang, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

Zhu, R.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Bioconjug. Chem. (1)

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem. 13, 554–560 (2002).

Biosystems (1)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
[CrossRef]

Clin. Lab. Med. (1)

D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, and P. Morrissey, “Cellular image analysis and imaging by flow cytometry,” Clin. Lab. Med. 27, 653–670 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Nature (6)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

D. R. Solli, C. Roper, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[CrossRef]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. B. Yakar, “Functional regeneration after laser axotomy,” Nature 432, 822 (2004).
[CrossRef]

T. Grotjohann, T. IIaria, M. Leutenegger, H. Bock, N. T. Urban, F. L. Cardinal, K. I. Willing, C. Eggeling, S. Jakobs, and S. W. Hell, “Diffraction-unlimited all-optical imaging and writing with a photochromic GFP,” Nature 478, 204–208 (2011).
[CrossRef]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[CrossRef]

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43 (2005).
[CrossRef]

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

Sci. Rep. (1)

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. D. Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).

Top. Curr. Chem. (1)

K. Licha, “Contrast agents for optical imaging,” Top. Curr. Chem. 222, 1–29 (2002).
[CrossRef]

Other (1)

J. V. Watson, Introduction to Flow Cytometry (Cambridge University, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Spectrum of the mode-locked pulse laser. (b) Temporal profile of the mode-locked pulse laser, as shown in the real-time pulse traces.

Fig. 2.
Fig. 2.

Schematic of the ultrafast imaging system: (a) Lab-made passively mode-locked subpicosecond laser. (b) Space–wavelength mapping: a grating is used to encode the spatial information into the spectrum. (c) Wavelength–time mapping: pulse in dispersive fiber with shorter/longer wavelengths travel faster/slower, and detection. DCF, dispersion compensating fiber; EDFA, erbium-doped fiber amplifier; PC, polarization controller; SESAM, semiconductor saturable absorber mirror; PD, photodetector.

Fig. 3.
Fig. 3.

Calculated spatial resolution of such an imaging system in three limiting cases: spatial-diffraction-limited (red), temporal-dispersion-limited (green), and detection-limited (blue). The dashed line locates the GVD of the fiber used in the system.

Fig. 4.
Fig. 4.

Comparison between the image-encoded temporal waveform captured in single shot (blue, top) and the image-encoded spectrum measured by an optical spectrum analyzer (red bottom).

Fig. 5.
Fig. 5.

2D image of a resolution target (USAF-1951). (a) Waveform after dispersive fiber captured from the red line in (b). (b) Pattern of group 4. (c) 2D image of group 4 elements 2 to 6. The scan direction is the rainbow line of spectrum from every pulse, and the vertical direction images are captured by translating the resolution target.

Fig. 6.
Fig. 6.

Images of the modified UTC-PD. (a) Train of pulses with UTC-PD captured by the photodetector and displayed on the oscilloscope. The pulse interval is 48 ns, corresponding to the scan rate of 20.9 MHz. The figure inset shows single frame information, (b) the CCD image of UTC-PD, and (c) the 2D line scan imaging result.

Metrics