Abstract

We introduce the capture effect concept in microwave photonic links (MWPLs) for the first time to our knowledge. The capture effect or the small-signal suppression is the change in the amplitude ratio of the two signals between input and output of the intensity-modulation direct-detection (IMDD) MWPLs. An analytical explanation of the performance of external IMDD MWPLs due to the effects of nonlinearity combined with sum of several input sinusoidal signals is given. We have investigated the suppression of a weaker signal in these links. General analytic expression for the small-signal suppression is derived using a nonlinear analytical approach. We show that the small-signal suppression is quite dependent on the input back-off, the power ratio of input signals, and on the number of input sinusoidal signals. The theoretical maximum possible signal suppression was found to be 6 dB. This analytical asymptotic value is verified by numerical results. We show the influence of the capture effect of the nonlinear MWPL on the optoelectronic oscillator operation that is verified by experimental data in the literature that has already been published.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theor. Technol. 50, 877–887 (2002).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
    [CrossRef]
  3. J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
    [CrossRef]
  4. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  5. T. Berceli and P. R. Herczfeld, “Microwave photonics—a historical perspective,” IEEE Trans. Microwave Theor. Technol. 58, 2992–3000 (2010).
    [CrossRef]
  6. J. Yao, “A tutorial on microwave photonics I,” IEEE Photon. Soc. Newslett. 26 (2), 4–12 (2012).
  7. J. Yao, “A tutorial on microwave photonics II,” IEEE Photon. Soc. Newslett. 26 (3), 5–12 (2012).
  8. J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).
  9. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
    [CrossRef]
  10. W. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).
  11. A. Vilcot, B. Cabon, and J. Chazelas, Microwave Photonics: From Components to Applications and Systems (Kluwer, 2003).
  12. C. H. Lee, Microwave Photonics (CRC Press, 2007), Vol. 124.
  13. S. Iezekiel, Microwave Photonics—Devices and Applications (Wiley, 2009).
  14. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
    [CrossRef]
  15. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
    [CrossRef]
  16. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Technol. 54, 832–846 (2006).
    [CrossRef]
  17. A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theor. Technol. 43, 2311–2317 (1995).
    [CrossRef]
  18. R. Soref, “Voltage-controlled optical/RF phase shifter,” J. Lightwave Technol. 3, 992–998 (1985).
    [CrossRef]
  19. I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theor. Technol. 43, 2378–2386 (1995).
    [CrossRef]
  20. H. Shahoei, L. Ming, and J. Yao, “Continuously tunable time delay using an optically pumped linear chirped fiber Bragg grating,” J. Lightwave Technol. 29, 1465–1472 (2011).
    [CrossRef]
  21. C. H. Cox, Analog Optical Links—Theory and Practice (Cambridge University, 2004).
  22. C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
    [CrossRef]
  23. C. R. Cahn, “A note on signal-to-noise ratio in bandpass limiters,” IRE Trans. Inf. Theory 7, 39–43 (1961).
    [CrossRef]
  24. W. B. Davenport, “Signal-to-noise ratios in bandpass limiters,” J. Appl. Phys. 24, 720–727 (1953).
    [CrossRef]
  25. J. J. Jones, “Hard-limiting of two signals in random noise,” IEEE Trans. Inf. Theory 9, 34–42 (1963).
    [CrossRef]
  26. W. Sollfrey, “Hard limiting of three and four sinusoidal signals,” IEEE Trans. Inf. Theory 15, 2–7; (1969).
    [CrossRef]
  27. J. L. Sevy, “The effect of multiple CW and FM signals passed through a hard limiter or TWT,” IEEE Trans. Commun. Technol. 14, 568–578 (1966).
    [CrossRef]
  28. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  29. F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegan, eds. (Dover, 1972), pp. 355–434.
  30. F. E. Bond and H. F. Meyer, “Intermodulation effects in limiter amplifier repeaters,” IEEE Trans. Commun. Technol. COM-18, 27–135 (1970).
  31. X. S. Yao and L. Maleki, “Influence of an Externally Modulated Photonic Link on a Microwave Communications System,” , The Jet Propulsion Laboratory, Pasadena, California, p. 16, May 1994.
  32. A. E. Siegman, Lasers (University Science Books, 1986).
  33. S. E. Hosseini and A. Banai, “Analytical prediction of the main oscillation power and spurious levels in optoelectronic oscillators,” J. Lightwave Technology (to be published).
  34. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microwave Theor. Technol. 56, 449–456 (2008).
    [CrossRef]
  35. C. W. Nelson, A. Hati, D. A. Howe, and W. Zhou, “Microwave optoelectronic oscillator with optical gain,” in Frequency Control Symposium (IEEE, 2007), pp. 1014–1019.
  36. A. Hayat, A. Bacou, A. Rissons, and J.-C. Mollier, “2.49  GHz low phase-noise optoelectronic oscillator using 1.55  um VCSEL for avionics and aerospace applications,” Proc. SPIE 7229, 72290O (2009).
    [CrossRef]
  37. E. C. Levy, O. Okusaga, M. Horowitz, C. R. Menyuk, W. Zhou, and G. M. Carter, “Comprehensive computational model of single- and dual-loop optoelectronic oscillators with experimental verification.” Opt. Express 18, 21461–21476 (2010).
    [CrossRef]
  38. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express 19, 5839–5854 (2011).
    [CrossRef]

2013 (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

2012 (3)

J. Yao, “A tutorial on microwave photonics I,” IEEE Photon. Soc. Newslett. 26 (2), 4–12 (2012).

J. Yao, “A tutorial on microwave photonics II,” IEEE Photon. Soc. Newslett. 26 (3), 5–12 (2012).

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

2011 (2)

2010 (2)

2009 (2)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

A. Hayat, A. Bacou, A. Rissons, and J.-C. Mollier, “2.49  GHz low phase-noise optoelectronic oscillator using 1.55  um VCSEL for avionics and aerospace applications,” Proc. SPIE 7229, 72290O (2009).
[CrossRef]

2008 (1)

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microwave Theor. Technol. 56, 449–456 (2008).
[CrossRef]

2007 (1)

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

2006 (4)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[CrossRef]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Technol. 54, 832–846 (2006).
[CrossRef]

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

2002 (1)

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theor. Technol. 50, 877–887 (2002).
[CrossRef]

1996 (1)

1995 (2)

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theor. Technol. 43, 2311–2317 (1995).
[CrossRef]

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theor. Technol. 43, 2378–2386 (1995).
[CrossRef]

1985 (1)

R. Soref, “Voltage-controlled optical/RF phase shifter,” J. Lightwave Technol. 3, 992–998 (1985).
[CrossRef]

1970 (1)

F. E. Bond and H. F. Meyer, “Intermodulation effects in limiter amplifier repeaters,” IEEE Trans. Commun. Technol. COM-18, 27–135 (1970).

1969 (1)

W. Sollfrey, “Hard limiting of three and four sinusoidal signals,” IEEE Trans. Inf. Theory 15, 2–7; (1969).
[CrossRef]

1966 (1)

J. L. Sevy, “The effect of multiple CW and FM signals passed through a hard limiter or TWT,” IEEE Trans. Commun. Technol. 14, 568–578 (1966).
[CrossRef]

1963 (1)

J. J. Jones, “Hard-limiting of two signals in random noise,” IEEE Trans. Inf. Theory 9, 34–42 (1963).
[CrossRef]

1961 (1)

C. R. Cahn, “A note on signal-to-noise ratio in bandpass limiters,” IRE Trans. Inf. Theory 7, 39–43 (1961).
[CrossRef]

1953 (1)

W. B. Davenport, “Signal-to-noise ratios in bandpass limiters,” J. Appl. Phys. 24, 720–727 (1953).
[CrossRef]

Ackerman, E.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

Adles, E. J.

Bacou, A.

A. Hayat, A. Bacou, A. Rissons, and J.-C. Mollier, “2.49  GHz low phase-noise optoelectronic oscillator using 1.55  um VCSEL for avionics and aerospace applications,” Proc. SPIE 7229, 72290O (2009).
[CrossRef]

Banai, A.

S. E. Hosseini and A. Banai, “Analytical prediction of the main oscillation power and spurious levels in optoelectronic oscillators,” J. Lightwave Technology (to be published).

Berceli, T.

T. Berceli and P. R. Herczfeld, “Microwave photonics—a historical perspective,” IEEE Trans. Microwave Theor. Technol. 58, 2992–3000 (2010).
[CrossRef]

Betts, G.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

Bond, F. E.

F. E. Bond and H. F. Meyer, “Intermodulation effects in limiter amplifier repeaters,” IEEE Trans. Commun. Technol. COM-18, 27–135 (1970).

Cabon, B.

A. Vilcot, B. Cabon, and J. Chazelas, Microwave Photonics: From Components to Applications and Systems (Kluwer, 2003).

Cahn, C. R.

C. R. Cahn, “A note on signal-to-noise ratio in bandpass limiters,” IRE Trans. Inf. Theory 7, 39–43 (1961).
[CrossRef]

Campany, J.

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

Carter, G. M.

Chang, W. C.

W. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).

Chazelas, J.

A. Vilcot, B. Cabon, and J. Chazelas, Microwave Photonics: From Components to Applications and Systems (Kluwer, 2003).

Cox, C.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

C. H. Cox, Analog Optical Links—Theory and Practice (Cambridge University, 2004).

Davenport, W. B.

W. B. Davenport, “Signal-to-noise ratios in bandpass limiters,” J. Appl. Phys. 24, 720–727 (1953).
[CrossRef]

Eliyahu, D.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microwave Theor. Technol. 56, 449–456 (2008).
[CrossRef]

Frigyes, I.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theor. Technol. 43, 2378–2386 (1995).
[CrossRef]

Gasulla, I.

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

Hati, A.

C. W. Nelson, A. Hati, D. A. Howe, and W. Zhou, “Microwave optoelectronic oscillator with optical gain,” in Frequency Control Symposium (IEEE, 2007), pp. 1014–1019.

Hayat, A.

A. Hayat, A. Bacou, A. Rissons, and J.-C. Mollier, “2.49  GHz low phase-noise optoelectronic oscillator using 1.55  um VCSEL for avionics and aerospace applications,” Proc. SPIE 7229, 72290O (2009).
[CrossRef]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Herczfeld, P. R.

T. Berceli and P. R. Herczfeld, “Microwave photonics—a historical perspective,” IEEE Trans. Microwave Theor. Technol. 58, 2992–3000 (2010).
[CrossRef]

Horowitz, M.

Hosseini, S. E.

S. E. Hosseini and A. Banai, “Analytical prediction of the main oscillation power and spurious levels in optoelectronic oscillators,” J. Lightwave Technology (to be published).

Howe, D. A.

C. W. Nelson, A. Hati, D. A. Howe, and W. Zhou, “Microwave optoelectronic oscillator with optical gain,” in Frequency Control Symposium (IEEE, 2007), pp. 1014–1019.

Iezekiel, S.

S. Iezekiel, Microwave Photonics—Devices and Applications (Wiley, 2009).

Jones, J. J.

J. J. Jones, “Hard-limiting of two signals in random noise,” IEEE Trans. Inf. Theory 9, 34–42 (1963).
[CrossRef]

Knight, G. A.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theor. Technol. 43, 2311–2317 (1995).
[CrossRef]

Lee, C. H.

C. H. Lee, Microwave Photonics (CRC Press, 2007), Vol. 124.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Levy, E. C.

Lindsay, A. C.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theor. Technol. 43, 2311–2317 (1995).
[CrossRef]

Lloret, J.

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

Maleki, L.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microwave Theor. Technol. 56, 449–456 (2008).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Influence of an Externally Modulated Photonic Link on a Microwave Communications System,” , The Jet Propulsion Laboratory, Pasadena, California, p. 16, May 1994.

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Menyuk, C. R.

Meyer, H. F.

F. E. Bond and H. F. Meyer, “Intermodulation effects in limiter amplifier repeaters,” IEEE Trans. Commun. Technol. COM-18, 27–135 (1970).

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Technol. 54, 832–846 (2006).
[CrossRef]

Ming, L.

Mollier, J.-C.

A. Hayat, A. Bacou, A. Rissons, and J.-C. Mollier, “2.49  GHz low phase-noise optoelectronic oscillator using 1.55  um VCSEL for avionics and aerospace applications,” Proc. SPIE 7229, 72290O (2009).
[CrossRef]

Mora, J.

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

Nelson, C. W.

C. W. Nelson, A. Hati, D. A. Howe, and W. Zhou, “Microwave optoelectronic oscillator with optical gain,” in Frequency Control Symposium (IEEE, 2007), pp. 1014–1019.

Novak, D.

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Okusaga, O.

Olver, F. W. J.

F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegan, eds. (Dover, 1972), pp. 355–434.

Prince, J.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

Rissons, A.

A. Hayat, A. Bacou, A. Rissons, and J.-C. Mollier, “2.49  GHz low phase-noise optoelectronic oscillator using 1.55  um VCSEL for avionics and aerospace applications,” Proc. SPIE 7229, 72290O (2009).
[CrossRef]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

Sancho, J.

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24, 4628–4641 (2006).
[CrossRef]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theor. Technol. 50, 877–887 (2002).
[CrossRef]

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theor. Technol. 43, 2378–2386 (1995).
[CrossRef]

Seidel, D.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microwave Theor. Technol. 56, 449–456 (2008).
[CrossRef]

Sevy, J. L.

J. L. Sevy, “The effect of multiple CW and FM signals passed through a hard limiter or TWT,” IEEE Trans. Commun. Technol. 14, 568–578 (1966).
[CrossRef]

Shahoei, H.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Sollfrey, W.

W. Sollfrey, “Hard limiting of three and four sinusoidal signals,” IEEE Trans. Inf. Theory 15, 2–7; (1969).
[CrossRef]

Soref, R.

R. Soref, “Voltage-controlled optical/RF phase shifter,” J. Lightwave Technol. 3, 992–998 (1985).
[CrossRef]

Vilcot, A.

A. Vilcot, B. Cabon, and J. Chazelas, Microwave Photonics: From Components to Applications and Systems (Kluwer, 2003).

Williams, K. J.

Winnall, S. T.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theor. Technol. 43, 2311–2317 (1995).
[CrossRef]

Yao, J.

J. Yao, “A tutorial on microwave photonics I,” IEEE Photon. Soc. Newslett. 26 (2), 4–12 (2012).

J. Yao, “A tutorial on microwave photonics II,” IEEE Photon. Soc. Newslett. 26 (3), 5–12 (2012).

H. Shahoei, L. Ming, and J. Yao, “Continuously tunable time delay using an optically pumped linear chirped fiber Bragg grating,” J. Lightwave Technol. 29, 1465–1472 (2011).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13, 1725–1735 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Influence of an Externally Modulated Photonic Link on a Microwave Communications System,” , The Jet Propulsion Laboratory, Pasadena, California, p. 16, May 1994.

Zhou, W.

IEEE Photon. Soc. Newslett. (2)

J. Yao, “A tutorial on microwave photonics I,” IEEE Photon. Soc. Newslett. 26 (2), 4–12 (2012).

J. Yao, “A tutorial on microwave photonics II,” IEEE Photon. Soc. Newslett. 26 (3), 5–12 (2012).

IEEE Trans. Commun. Technol. (2)

F. E. Bond and H. F. Meyer, “Intermodulation effects in limiter amplifier repeaters,” IEEE Trans. Commun. Technol. COM-18, 27–135 (1970).

J. L. Sevy, “The effect of multiple CW and FM signals passed through a hard limiter or TWT,” IEEE Trans. Commun. Technol. 14, 568–578 (1966).
[CrossRef]

IEEE Trans. Inf. Theory (2)

J. J. Jones, “Hard-limiting of two signals in random noise,” IEEE Trans. Inf. Theory 9, 34–42 (1963).
[CrossRef]

W. Sollfrey, “Hard limiting of three and four sinusoidal signals,” IEEE Trans. Inf. Theory 15, 2–7; (1969).
[CrossRef]

IEEE Trans. Microwave Theor. Technol. (8)

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microwave Theor. Technol. 56, 449–456 (2008).
[CrossRef]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microwave Theor. Technol. 54, 906–920 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microwave Theor. Technol. 54, 832–846 (2006).
[CrossRef]

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theor. Technol. 43, 2311–2317 (1995).
[CrossRef]

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microwave Theor. Technol. 43, 2378–2386 (1995).
[CrossRef]

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microwave Theor. Technol. 50, 877–887 (2002).
[CrossRef]

T. Berceli and P. R. Herczfeld, “Microwave photonics—a historical perspective,” IEEE Trans. Microwave Theor. Technol. 58, 2992–3000 (2010).
[CrossRef]

IRE Trans. Inf. Theory (1)

C. R. Cahn, “A note on signal-to-noise ratio in bandpass limiters,” IRE Trans. Inf. Theory 7, 39–43 (1961).
[CrossRef]

J. Appl. Phys. (1)

W. B. Davenport, “Signal-to-noise ratios in bandpass limiters,” J. Appl. Phys. 24, 720–727 (1953).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev. 7, 506–538 (2013).
[CrossRef]

Nat. Photonics (1)

J. Campany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1, 319–330 (2007).
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

A. Hayat, A. Bacou, A. Rissons, and J.-C. Mollier, “2.49  GHz low phase-noise optoelectronic oscillator using 1.55  um VCSEL for avionics and aerospace applications,” Proc. SPIE 7229, 72290O (2009).
[CrossRef]

Waves (1)

J. Capmany, S. Sales, I. Gasulla, J. Mora, J. Lloret, and J. Sancho, “Innovative concepts in microwave photonics,” Waves 4, 43–58 (2012).

Other (11)

C. H. Cox, Analog Optical Links—Theory and Practice (Cambridge University, 2004).

W. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).

A. Vilcot, B. Cabon, and J. Chazelas, Microwave Photonics: From Components to Applications and Systems (Kluwer, 2003).

C. H. Lee, Microwave Photonics (CRC Press, 2007), Vol. 124.

S. Iezekiel, Microwave Photonics—Devices and Applications (Wiley, 2009).

C. W. Nelson, A. Hati, D. A. Howe, and W. Zhou, “Microwave optoelectronic oscillator with optical gain,” in Frequency Control Symposium (IEEE, 2007), pp. 1014–1019.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

F. W. J. Olver, “Bessel functions of integer order,” in Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegan, eds. (Dover, 1972), pp. 355–434.

X. S. Yao and L. Maleki, “Influence of an Externally Modulated Photonic Link on a Microwave Communications System,” , The Jet Propulsion Laboratory, Pasadena, California, p. 16, May 1994.

A. E. Siegman, Lasers (University Science Books, 1986).

S. E. Hosseini and A. Banai, “Analytical prediction of the main oscillation power and spurious levels in optoelectronic oscillators,” J. Lightwave Technology (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Basic architecture of IMDD MWPLs.

Fig. 2.
Fig. 2.

IMDD MWPL model followed by a bandpass RF filter for analysis.

Fig. 3.
Fig. 3.

Typical input–output characteristic function of the IMDD MWPL.

Fig. 4.
Fig. 4.

Amplitudes (dB) of the spectral components of the filtered output signal as a function of the input power ratio (ΔPi).

Fig. 5.
Fig. 5.

Frequency spectrum of the (left) input and (right) output of the IMDD MWPL at 0 dB input amplitude ratio (A=0dB).

Fig. 6.
Fig. 6.

Frequency spectrum of the (left) input and (right) output of the IMDD MWPL at 5 dB input amplitude ratio (A=5dB).

Fig. 7.
Fig. 7.

Small-signal suppression of an IMDD MWPL as a function of the input power ratio (ΔPi) for several IBOs.

Fig. 8.
Fig. 8.

Three input sinusoidal signals to MWPL. (Left) One-strong-two-weak; (Right) two-strong-one-weak.

Fig. 9.
Fig. 9.

Three-signal suppression as a function of the input power ratio (ΔPi), nonuniform spacing. (Left) One-strong-two-weak case; (Right) two-strong-one-weak case.

Fig. 10.
Fig. 10.

Three-signal suppression as a function of the input power ratio (ΔPi), uniform spacing. (Left) One-strong-two-weak case; (Right) two-strong-one-weak case.

Fig. 11.
Fig. 11.

Number of IMP3 of the A+BC form that contains the strong signal and fall on each input frequency position for N=45.

Fig. 12.
Fig. 12.

Small-signal suppression for N input signals as a function of the input power ratio (ΔPi). (Left) Nonuniform spacing case; (Right) uniform spacing case.

Fig. 13.
Fig. 13.

N=11 (1strong+10weak). (Left) Input sinusoidal signals to MWPL; (Right) output sinusoidal signals.

Fig. 14.
Fig. 14.

Signal suppression for various input sinusoidal signals to MWPL as a function of the input power ratio (ΔPi) for N=11 (1strong+10weak).

Fig. 15.
Fig. 15.

Most basic architecture of the optoelectronic oscillators.

Fig. 16.
Fig. 16.

Loop gain saturation as a function of the main mode power (P1).

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

vin(t)=m=1Nvm(t),
vm(t)=Amsin(ωmt+φm);(m=1,,N).
vout(t)=Vph[1cos(πVB/Vπ+πvin(t)/Vπ)],
vout(t)=Vph[1cos(Γ0+m=1Nβmsin(2πfmt+φm))],
eizcosα=n=+inJn(z)einα,
cos(Γ0+m=1Nβmsin(ωmt+φm))=Re{eiΓ0m=1Neiβmsin(ωmt+φm)}=k1=+k2=+kN=+Jk1(β1)Jk2(β2)JkN(βN)×cos(Γ0+k1ω1t+k2ω2t++kNωNt+k1φ1+k2φ2++kNφN)=k1=+k2=+kN=+[cos(Γ0+m=1N(km(ωmt+φm)))n=1NJkn(βn)],
vout(t)=Vph{1k1=+k2=+kN=+[cos(Γ0+m=1N(kmωmt+θm))×n=1NJkn(βn)]},
vIM=(n=1NJkn(βn))cos(m=1N(kmωmt+θm)).
fIMM=k1f1+k2f2++knfn=m=1nkmfm,
M=m=1n|km|
m=1nkm=1,
ΔPi=(A1/A2)2
vout(t)=Vph{1k1=+k2=+Jk1(β1)Jk2(β2)×cos(Γ0+k1ω1t+k2ω2t+k1φ1+k2φ2)},
vout-Filter(t)=k1=+k2=+Aout:k1ω1+k2ω2sin(k1ω1t+k2ω2t+θ1+θ2);k1+k2=1and|k1ω1+k2ω2(ω1+ω2)/2|<Filter Bandwidth.
Aout:(m+1)ω1mω2=2Vphsin(Γ0)(1)mJm+1(β1)Jm(β2);m=0,1,2,Aout:(m+1)ω2mω1=2Vphsin(Γ0)(1)mJm(β1)Jm+1(β2);m=0,1,2,
ΔPi=Pi,ω1/Pi,ω2,ΔPo=Po,ω1/Po,ω2,
ΔPi=Pi,ω1/Pi,ω2=(A1/A2)2=1/A2ΔPo=Po,ω1/Po,ω2=(Aout:ω1/Aout:ω2)2=(J1(β1)J0(β2)J0(β1)J1(β2))2.
Δ=ΔPo/ΔPior(Δ)dB=(ΔPo)dB(ΔPi)dB,
Δ=ΔPo/ΔPi=[AJ1(β1)J0(Aβ1)J0(β1)J1(Aβ1)]2.
Δmax=limA0,β1β1,satΔ=limA0,β1β1,sat[AJ1(β1)J0(Aβ1)J0(β1)J1(Aβ1)]2.
Δmax=limβ1β1,sat[2J1(β1)β1J0(β1)]2.
Aout:ω1=2Vphsin(Γ0)J1(β1).
β1@saturation=j1,1=1.8412.
ddx[xmJm(x)]=xmJm1(x),
J1(β1)β1J0(β1)|β1=j1,1=1.
Δmax=4orΔmax,dB=6dB.
Δ=[AJ1(β1)J0(Aβ1)J0(β1)J1(Aβ1)]2;A=A3A1=1/ΔPi,1strong+2weak:A1A2=A3,2strong+1weak:A1=A2A3.
Δ={J04(Aβ1)+J14(Aβ1)J02(β1)+J22(β1)[AJ1(β1)J0(Aβ1)J1(Aβ1)]2;A1A2=A3A2J02(β1)J12(β1)J02(Aβ1)+J14(β1)J12(Aβ1)J04(β1)J12(Aβ1)+J12(β1)J22(β1)J02(Aβ1);A1=A2A3A=A3/A1=1/ΔPi.
Δmax=limA0,β1β1,satJ04(Aβ1)+J14(Aβ1)J02(β1)+J22(β1)A2J12(β1)J02(Aβ1)J12(Aβ1).
Δmax=limβ1j1,1[2J1(β1)β1J02(β1)+J22(β1)]2.
Jm+1(x)=mJm(x)/xJm(x),
J0(j1,1)=J2(j1,1).
Δmax=2orΔmax,dB=3dB,
vIM3:(A+BC)J1(βN+12)J1(βm)J1(βn)k=1,k(N+1)/2,m,nNJ0(βk),
vIM3:(2AB){J2(βN+12)J1(βm)k=1,k(N+1)/2,mNJ0(βk)andJ1(βN+12)J2(βm)k=1,k(N+1)/2,mNJ0(βk).
Gω1=2GsJ1(β1)J04(β2)+J14(β2)/β1,Gω2=2GsJ0(β2)J1(β2)J02(β1)+J22(β1)/β2,
Gs=πVphsin(Γ0)/Vπ
|Gω1|=2|Gs||J1(β1)|/β1=1,|Gω2|=|Gs|J02(β1)+J22(β1)<1.
A1=Vπ[12192/|Gs|48]1/2/π.
Pω2=GA2(Pnoise+|Gω2|2Pnoise+|Gω2|4Pnoise+),
Pω2=GA2Pnoisen=0|Gω2|2n=GA2Pnoise/(1|Gω2|2).
ρnoise=FkBT0+NrinID2RL+2eIDRL,
ρω2=GA2ρnoise/(1|Gω2|2)(W/Hz).
σ=ρω2Pω1=π2RLGA2Vπ2(1|Gω2|2)FkBT0+NrinID2RL+2eIDRL6234/|Gs|1.
Δf=f0/Q=ln|Gω2|/πτ.

Metrics