Abstract

In this work, a kind of grating that, to our knowledge, has not yet been analyzed for diffractive purposes is proposed. The mentioned grating consists of metallic intercalated slits of two different metals on a glass substrate. The main characteristic and peculiarity of the proposed grating is that it is totally planar, without any slopes or grooves. We analyze the intensity distribution at the near- and far-field produced by the grating. The method used is rigorous-coupled wave analysis. We show how the metallic layer thickness is a crucial parameter to achieve the highest efficiency of the diffraction orders and, therefore, the highest contrast of the diffracted fringes. To conclude, we investigate how parameters such as the period, duty cycle, wavelength, or the used metals affect the diffracted field. Some nonexpected behaviors have been found. As we demonstrate by comparing with other kinds of gratings, the proposed grating would be useful in applications in which fringes are needed in both the front and back sides of the grating.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Palmer, Diffraction Grating Handbook (Richardson Grating Laboratory, 2000).
  2. F. J. Torcal-Milla, L. M. Sanchez-Brea, and F. J. Salgado-Remacha, “Self-images location of amplitude/phase binary gratings,” Appl. Opt. 48, 6252–6258 (2009).
    [CrossRef]
  3. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  4. C. G. Someda, “Far field of polarization gratings,” Opt. Lett. 24, 1657–1659 (1999).
    [CrossRef]
  5. F. J. Torcal-Milla, L. M. Sanchez-Brea, and E. Bernabeu, “Self-imaging of gratings with rough strips,” J. Opt. Soc. Am. A 25, 2390–2394 (2008).
    [CrossRef]
  6. L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Far field of gratings with rough strips,” J. Opt. Soc. Am. A 25, 828–833 (2008).
    [CrossRef]
  7. E. Keren and O. Kafri, “Diffraction effects in moire deflectometry,” J. Opt. Soc. Am. A 2, 111–120 (1985).
    [CrossRef]
  8. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
    [CrossRef]
  9. B. F. Oreb and R. G. Dorsch, “Profilometry by phase-shifted Talbot images,” Appl. Opt. 33, 7955–7962 (1994).
    [CrossRef]
  10. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  11. W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. Ser. 9(56), 401–407 (1836).
    [CrossRef]
  12. L. Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. Ser. 11(67), 196 (1881).
    [CrossRef]
  13. K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
    [CrossRef]
  14. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
    [CrossRef]
  15. M. Testorf, J. Jhans, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
    [CrossRef]
  16. S. Teng, L. Liu, J. Zu, Z. Luan, and D. Liu, “Uniform theory of the Talbot effect with partially coherent light illumination,” J. Opt. Soc. Am. A 20, 1747–1754 (2003).
    [CrossRef]
  17. S. Teng, Y. Tan, and Ch. Cheng, “Quasi-Talbot effect of the high-density grating in near field,” J. Opt. Soc. Am. A 25, 2945–2951 (2008).
    [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  19. N. Chateau and J. P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994).
    [CrossRef]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  21. W. Nakagawa, R. Ch. Tyan, and Y. Fainman, “Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation,” J. Opt. Soc. Am. A 19, 1919–1928 (2002).
    [CrossRef]
  22. N. P. Sergeant, M. Agrawal, and P. Peumans, “High performance solar-selective absorbers using coated sub-wavelength gratings,” Opt. Express 18, 5525–5540 (2010).
    [CrossRef]
  23. D. Chambers, G. Nordin, and S. Kim, “Fabrication and analysis of a three-layer stratified volume diffractive optical element high-efficiency grating,” Opt. Express 11, 27–38 (2003).
    [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

2010 (1)

2009 (1)

2008 (3)

2003 (2)

2002 (1)

1999 (2)

1996 (1)

M. Testorf, J. Jhans, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

1995 (1)

1994 (2)

1990 (1)

1989 (1)

K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
[CrossRef]

1985 (1)

1982 (1)

1971 (1)

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[CrossRef]

1881 (1)

L. Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. Ser. 11(67), 196 (1881).
[CrossRef]

1836 (1)

W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. Ser. 9(56), 401–407 (1836).
[CrossRef]

Agrawal, M.

Bernabeu, E.

Chambers, D.

Chateau, N.

Cheng, Ch.

Dorsch, R. G.

Fainman, Y.

Gaylord, T. K.

Goncharenko, A. M.

M. Testorf, J. Jhans, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Gori, F.

Grann, E. B.

Hugonin, J. P.

Jhans, J.

M. Testorf, J. Jhans, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Kafri, O.

Keren, E.

Khilo, N. A.

M. Testorf, J. Jhans, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Kim, S.

Liu, D.

Liu, L.

Loewen, E. G.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Lohmann, A. W.

A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on Talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
[CrossRef]

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[CrossRef]

Luan, Z.

Moharam, M. G.

Nakagawa, W.

Nordin, G.

Oreb, B. F.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Palmer, C.

C. Palmer, Diffraction Grating Handbook (Richardson Grating Laboratory, 2000).

Patorski, K.

K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
[CrossRef]

Peumans, P.

Pommet, D. A.

Popov, E.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

Rayleigh, L.

L. Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. Ser. 11(67), 196 (1881).
[CrossRef]

Salgado-Remacha, F. J.

Sanchez-Brea, L. M.

Sergeant, N. P.

Silva, D. E.

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[CrossRef]

Someda, C. G.

Talbot, W. H. F.

W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. Ser. 9(56), 401–407 (1836).
[CrossRef]

Tan, Y.

Teng, S.

Testorf, M.

M. Testorf, J. Jhans, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Thomas, J. A.

Torcal-Milla, F. J.

Tyan, R. Ch.

Zu, J.

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (8)

Opt. Commun. (2)

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2, 413–415 (1971).
[CrossRef]

M. Testorf, J. Jhans, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129, 167–172 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. Ser. (2)

W. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. Ser. 9(56), 401–407 (1836).
[CrossRef]

L. Rayleigh, “On copying diffraction gratings and some phenomena connected therewith,” Philos. Mag. Ser. 11(67), 196 (1881).
[CrossRef]

Prog. Opt. (1)

K. Patorski, “The self-imaging phenomenon and its applications,” Prog. Opt. 27, 1–108 (1989).
[CrossRef]

Other (3)

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

C. Palmer, Diffraction Grating Handbook (Richardson Grating Laboratory, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Scheme of the grating proposed (p is the period of the grating and n1, n2, and nS are the refractive indices).

Fig. 2.
Fig. 2.

Transmission (t) and reflection (r) of single layers of chromium, silver, and gold in terms of their thicknesses, λ=632.8nm.

Fig. 3.
Fig. 3.

Transmission (t) and reflection (r) of single layers of chromium, silver, and gold in terms of the illumination wavelength, thickness=100nm.

Fig. 4.
Fig. 4.

Efficiency of the first diffraction orders in terms of the grating thickness, chromium–silver grating, p=4μm, λ=632.8nm. A zoom of the relevant area of the image is also shown.

Fig. 5.
Fig. 5.

Efficiency of the first diffraction orders in terms of the grating thickness. (a) Chrome–gold grating. (b) Silver–gold grating, p=4μm, λ=632.8nm. A zoom of the relevant area of the images is also shown.

Fig. 6.
Fig. 6.

Reflected intensity distribution of the chrome–silver grating, λ=632.8nm, p=4μm. (a) 12.5 nm thickness. (b) 100 nm thickness.

Fig. 7.
Fig. 7.

Contrast of the reflected intensity distribution for the chrome–silver grating and three different thicknesses: 12.5 nm (solid line); 25 nm (dash line); and 100 nm (dot line); λ=632.8nm, p=4μm. (a) Backward diffraction. (b) Forward diffraction.

Fig. 8.
Fig. 8.

Reflected and transmitted intensity distribution of the chrome–silver grating, λ=632.8nm, p=4μm, thickness=12.5nm.

Fig. 9.
Fig. 9.

Self-image profiles for different grating thicknesses, λ=632.8nm, p=4μm.

Fig. 10.
Fig. 10.

Zeroth and first diffraction orders efficiency for different illumination wavelengths: λ=420nm (solid line); λ=514nm (dash line); λ=632.8nm (dot line); and λ=780nm (dashed–dotted line); p=4μm, thickness=12.5nm. (a) Reflected orders. (b) Transmitted orders.

Fig. 11.
Fig. 11.

Efficiency of the zeroth and first diffraction orders in terms of the period of the grating for TM reflected (solid line); TM transmitted (dash line); TE reflected (dot line); and TE transmitted (dashed–dotted line), λ=632.8nm, thickness=12.5nm. (a) pλ. (b) pλ. (c) p<λ.

Fig. 12.
Fig. 12.

Efficiency of the first diffraction orders, reflected (r) and transmitted (t), in terms of the duty cycle of the grating, p=4μm, λ=632.8nm.

Fig. 13.
Fig. 13.

Efficiency of the first diffraction orders, reflected (r) and transmitted (t), in terms of the grating thickness, p=4μm, λ=632.8nm. (a) Glass grooves grating. (b) Chrome amplitude grating.

Metrics