Abstract

Viewing-zone control of integral imaging (II) displays using a directional projection and elemental image (EI) resizing method is proposed. Directional projection of EIs with the same size of microlens pitch causes an EI mismatch at the EI plane. In this method, EIs are generated computationally using a newly introduced algorithm: the directional elemental image generation and resizing algorithm considering the directional projection geometry of each pixel as well as an EI resizing method to prevent the EI mismatch. Generated EIs are projected as a collimated projection beam with a predefined directional angle, either horizontally or vertically. The proposed II display system allows reconstruction of a 3D image within a predefined viewing zone that is determined by the directional projection angle.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Lipmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
    [CrossRef]
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuayma, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [CrossRef]
  3. Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).
  4. S. Jung, S.-W. Min, J.-H. Park, and B. Lee, “Study of three-dimensional display system based on computer-generated integral photography,” J. Opt. Soc. Korea 5, 43–48 (2001).
    [CrossRef]
  5. H. Hoshino, F. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
    [CrossRef]
  6. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
    [CrossRef]
  7. J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
    [CrossRef]
  8. M. Yamasaki, H. Sakai, T. Koike, and M. Oikawa, “Full-parallax autostereoscopic display with scalable lateral resolution using overlaid multiple projection,” J. Soc. Inf. Disp. 18, 494–500 (2010).
    [CrossRef]
  9. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734–2736 (2004).
    [CrossRef]
  10. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
    [CrossRef]
  11. G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
    [CrossRef]
  12. S. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea 14, 121–126 (2010).
    [CrossRef]
  13. M. A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral-imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20, 221–227 (2012).
    [CrossRef]
  14. H.-J. Choi, Y. M. Kim, J. Jung, K.-M. Jung, and S.-W. Min, “Tiling integral floating display system with optimized viewing window,” Appl. Opt. 51, 5453–5457 (2012).
    [CrossRef]
  15. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  16. J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three dimensional display,” Opt. Express 12, 557–563 (2004).
    [CrossRef]
  17. A. Stern and B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42, 7036–7042 (2003).
    [CrossRef]
  18. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
    [CrossRef]
  19. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
    [CrossRef]
  20. J.-S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003).
    [CrossRef]
  21. J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12, 1077–1083 (2004).
    [CrossRef]
  22. R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
    [CrossRef]
  23. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13, 8424–8432 (2005).
    [CrossRef]
  24. H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
    [CrossRef]
  25. G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417 (2009).
    [CrossRef]
  26. M. Shin, G. Baasantseren, K.-C. Kwon, N. Kim, and J.-H. Park, “Three-dimensional display system based on integral imaging with viewing direction control,” Jpn. J. Appl. Phys. 49, 072501 (2010).
    [CrossRef]
  27. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
    [CrossRef]
  28. G. Li, K.-C. Kwon, G.-H. Shin, J.-S. Jeong, K.-H. Yoo, and N. Kim, “Simplified integral imaging pickup method for real objects using a depth camera,” J. Opt. Soc. Korea 16, 381–385 (2012).
    [CrossRef]

2012 (3)

2010 (3)

M. Shin, G. Baasantseren, K.-C. Kwon, N. Kim, and J.-H. Park, “Three-dimensional display system based on integral imaging with viewing direction control,” Jpn. J. Appl. Phys. 49, 072501 (2010).
[CrossRef]

S. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Korea 14, 121–126 (2010).
[CrossRef]

M. Yamasaki, H. Sakai, T. Koike, and M. Oikawa, “Full-parallax autostereoscopic display with scalable lateral resolution using overlaid multiple projection,” J. Soc. Inf. Disp. 18, 494–500 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (2)

2005 (3)

2004 (3)

2003 (3)

2002 (2)

2001 (2)

1998 (1)

H. Hoshino, F. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

1997 (1)

1978 (1)

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).

1908 (1)

M. G. Lipmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[CrossRef]

Alam, M. A.

M. A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral-imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20, 221–227 (2012).
[CrossRef]

Arai, J.

Baasantseren, G.

M. A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral-imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20, 221–227 (2012).
[CrossRef]

M. Shin, G. Baasantseren, K.-C. Kwon, N. Kim, and J.-H. Park, “Three-dimensional display system based on integral imaging with viewing direction control,” Jpn. J. Appl. Phys. 49, 072501 (2010).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417 (2009).
[CrossRef]

J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

Cho, S.-W.

Choi, H.

Choi, H.-J.

Erdenebat, M.-U.

M. A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral-imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20, 221–227 (2012).
[CrossRef]

Hong, J.

Hong, K.

Hoshino, H.

H. Hoshino, F. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

F. Okano, H. Hoshino, J. Arai, and I. Yuayma, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
[CrossRef]

Igarishi, Y.

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).

Isono, F.

H. Hoshino, F. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

Jang, J.-S.

Javidi, B.

Jeong, J.-S.

Jung, J.

Jung, J.-H.

Jung, K.-M.

Jung, S.

Kang, J.-M.

Kim, H.-R.

Kim, J.

Kim, N.

M. A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral-imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20, 221–227 (2012).
[CrossRef]

G. Li, K.-C. Kwon, G.-H. Shin, J.-S. Jeong, K.-H. Yoo, and N. Kim, “Simplified integral imaging pickup method for real objects using a depth camera,” J. Opt. Soc. Korea 16, 381–385 (2012).
[CrossRef]

M. Shin, G. Baasantseren, K.-C. Kwon, N. Kim, and J.-H. Park, “Three-dimensional display system based on integral imaging with viewing direction control,” Jpn. J. Appl. Phys. 49, 072501 (2010).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417 (2009).
[CrossRef]

J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

Kim, Y.

Kim, Y. M.

Kim, Y.-H.

Koike, T.

M. Yamasaki, H. Sakai, T. Koike, and M. Oikawa, “Full-parallax autostereoscopic display with scalable lateral resolution using overlaid multiple projection,” J. Soc. Inf. Disp. 18, 494–500 (2010).
[CrossRef]

Kwon, K.-C.

Lee, B.

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[CrossRef]

H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13, 8424–8432 (2005).
[CrossRef]

J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734–2736 (2004).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
[CrossRef]

S. Jung, S.-W. Min, J.-H. Park, and B. Lee, “Study of three-dimensional display system based on computer-generated integral photography,” J. Opt. Soc. Korea 5, 43–48 (2001).
[CrossRef]

Lee, S.-D.

Li, G.

Lipmann, M. G.

M. G. Lipmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[CrossRef]

Martínez-Corral, M.

Martinez-Cuenca, R.

Min, S.-W.

Murata, H.

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).

Navarro, H.

Oh, Y.-S.

Oikawa, M.

M. Yamasaki, H. Sakai, T. Koike, and M. Oikawa, “Full-parallax autostereoscopic display with scalable lateral resolution using overlaid multiple projection,” J. Soc. Inf. Disp. 18, 494–500 (2010).
[CrossRef]

Okano, F.

Park, G.

Park, J.-H.

M. A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral-imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20, 221–227 (2012).
[CrossRef]

M. Shin, G. Baasantseren, K.-C. Kwon, N. Kim, and J.-H. Park, “Three-dimensional display system based on integral imaging with viewing direction control,” Jpn. J. Appl. Phys. 49, 072501 (2010).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417 (2009).
[CrossRef]

J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
[CrossRef]

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[CrossRef]

H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13, 8424–8432 (2005).
[CrossRef]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734–2736 (2004).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
[CrossRef]

S. Jung, S.-W. Min, J.-H. Park, and B. Lee, “Study of three-dimensional display system based on computer-generated integral photography,” J. Opt. Soc. Korea 5, 43–48 (2001).
[CrossRef]

Park, S.

Saavedra, G.

Sakai, H.

M. Yamasaki, H. Sakai, T. Koike, and M. Oikawa, “Full-parallax autostereoscopic display with scalable lateral resolution using overlaid multiple projection,” J. Soc. Inf. Disp. 18, 494–500 (2010).
[CrossRef]

Shin, G.-H.

Shin, M.

M. Shin, G. Baasantseren, K.-C. Kwon, N. Kim, and J.-H. Park, “Three-dimensional display system based on integral imaging with viewing direction control,” Jpn. J. Appl. Phys. 49, 072501 (2010).
[CrossRef]

Song, B.-S.

Stern, A.

Ueda, M.

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).

Yamasaki, M.

M. Yamasaki, H. Sakai, T. Koike, and M. Oikawa, “Full-parallax autostereoscopic display with scalable lateral resolution using overlaid multiple projection,” J. Soc. Inf. Disp. 18, 494–500 (2010).
[CrossRef]

Yoo, K.-H.

Yuayma, I.

Yuyama, I.

H. Hoshino, F. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

Appl. Opt. (6)

J. Opt. Soc. Am. (1)

H. Hoshino, F. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. 15, 2059–2065 (1998).
[CrossRef]

J. Opt. Soc. Korea (3)

J. Phys. (1)

M. G. Lipmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–825 (1908).
[CrossRef]

J. Soc. Inf. Disp. (2)

M. Yamasaki, H. Sakai, T. Koike, and M. Oikawa, “Full-parallax autostereoscopic display with scalable lateral resolution using overlaid multiple projection,” J. Soc. Inf. Disp. 18, 494–500 (2010).
[CrossRef]

M. A. Alam, G. Baasantseren, M.-U. Erdenebat, N. Kim, and J.-H. Park, “Resolution enhancement of integral-imaging three-dimensional display using directional elemental image projection,” J. Soc. Inf. Disp. 20, 221–227 (2012).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Igarishi, H. Murata, and M. Ueda, “3D display system using a computer generated integral photography,” Jpn. J. Appl. Phys. 17, 1683–1684 (1978).

M. Shin, G. Baasantseren, K.-C. Kwon, N. Kim, and J.-H. Park, “Three-dimensional display system based on integral imaging with viewing direction control,” Jpn. J. Appl. Phys. 49, 072501 (2010).
[CrossRef]

Opt. Express (10)

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef]

J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12, 1077–1083 (2004).
[CrossRef]

R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef]

H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13, 8424–8432 (2005).
[CrossRef]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express 11, 927–932 (2003).
[CrossRef]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417 (2009).
[CrossRef]

J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
[CrossRef]

J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three dimensional display,” Opt. Express 12, 557–563 (2004).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Principle of the proposed method.

Fig. 2.
Fig. 2.

System configuration for the proposed method.

Fig. 3.
Fig. 3.

Geometry of the directionally projected EIs and the microlens array for (a) horizontal and (b) vertical directional projection of EIs by a projection angle “α” (1D view).

Fig. 4.
Fig. 4.

EI mismatch and the resizing principle: (a) generated EIs for central projection (along with the optic axis of the lens array), (b) EI mismatch and generated EIs using the resizing formula (horizontal), and (c) EI mismatch and generated EIs using the resizing formula (vertical).

Fig. 5.
Fig. 5.

Flow chart of the proposed DEIGR algorithm for DEI generation.

Fig. 6.
Fig. 6.

Experimental setup.

Fig. 7.
Fig. 7.

Verification of directional projection geometry of (a) the central projection of a test white image of 400×400 pixels, and (b) the 15° directional (horizontal) projection of a test white image of 400×400 pixels.

Fig. 8.
Fig. 8.

3D image reconstruction from 5° horizontal directional projection (a) without the EI resizing method and (b) with the EI resizing method.

Fig. 9.
Fig. 9.

3D image reconstruction for a 9° horizontal directional projection (a) without the EI resizing method and (b) with the EI resizing method.

Fig. 10.
Fig. 10.

3D image reconstruction for a 13° horizontal directional projection (a) without the EI resizing method and (b) with the EI resizing method.

Fig. 11.
Fig. 11.

Reconstructed images for 0° (central) projection viewing from three different positions.

Fig. 12.
Fig. 12.

Reconstructed 3D images for (a) 5° directional projection, (b) 9° directional projection, (c) 14° directional projection, and (d) 26° directional projection.

Fig. 13.
Fig. 13.

Reconstructed 3D images for (a) 5° directional projection, (b) 9° directional projection, (c) 14° directional projection, and (d) 26° directional projection.

Tables (1)

Tables Icon

Table 1. Summary of the Results for Several Directional Projections

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

d=ftanα,
θ=|θL|+|θR|=2tan1(PL2f),
θL=tan1(PL2f),
θR=tan1(PL2f).
φ=|φL|+|φR|2tan1(PL2f),
φL=(θL+φS),
φR=(θRφS),
φL=(θLφS),
φR=(θR+φS),
φS=|tan1(tanα1+2tan2α)|tan(PL2f)<α<tan1(PL2f).
φL={tan1(PL2f)+tan1(tanαL1+2tan2αL)0<αL<tan1(PL2f)tan1(PL2f)+tan1(tanαR1+2tan2αR)0>αR>tan1(PL2f),
φR={tan1(PL2f)+tan1(tanαL1+2tan2αL)0<αL<tan1(PL2f)tan1(PL2f)+tan1(tanαR1+2tan2αR)0>αR>tan1(PL2f).
φ=tan1(PLf),
φS=tan1(PL2f).
φ=tan1(PLf).
φS=tan1(PL2f).
φ=tan1(4PLf3PL2+4f2),
φS=2tan1(PL2f).
φ=tan1(4PLf3PL2+4f2),
φS=2tan1(PL2f).
φE2=2tan1(PLf)2θ,
φE3=2tan1(3PL2f)3θ,
DB=CBcosα=ηPLcosα,
SDEI=PLcosα.
SDEIX=PLcosαandSDEIY=PL,
SDEIX=PLandSDEIY=PLcosα.
PD=TPIN,

Metrics