Abstract

High-quality ultrasmooth surface is needed in modern optics, while the existing ultrasmooth surface processing methods are difficult to meet the requirement of the surface figure. In order to solve this problem, the active feed polishing (AFP) is taken as the research object, and the dual-rotor tool path is put forward for this technology. This tool path is generated based on the motion synthesis principle, which realizes smooth connection between different sections. At the same time, the eccentricity, the speed ratio, the velocity, and other parameters can be modified easily, avoiding using the complicated dual-rotor polishing mechanism. In order to further analyze the removal error, the removal amount calculation method for the dual-rotor path is researched and proposed. The simulation analysis results show that the greatest influence factor for the removal error is the sampling interval, the influence of the eccentricity and the speed ratio is less, and the velocity has little impact on it. In addition, the removal error can be controlled within acceptable range by reasonable selection of process parameters. Finally, through a processing experiment of a 100 mm plane lens, the feasibility and effectiveness of this path is verified. This experimental result shows that the AFP technology using the dual-rotor tool path can effectively correct the surface shape while reducing the surface roughness.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, J. J. Shaffer, Y. Shibano, and Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987).
    [CrossRef]
  2. H. Gao, J. Cao, and X. Chen, “Float polishing subnanometer-smooth surface,” Acta Opt. Sin. 15, 824–825 (1995).
  3. J. V. Wingerden, H. J. Frankena, and B. A. V. der Zwan, “Production and measurement of superpolished surfaces,” Opt. Eng. 31, 1086–1092 (1992).
    [CrossRef]
  4. J.-D. Kim, “Motion analysis of powder particles in EEM using cylindrical polyurethane wheel,” Int. J. Mach. Tools Manuf. 42, 21–28 (2002).
    [CrossRef]
  5. M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
    [CrossRef]
  6. Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
    [CrossRef]
  7. Z. Zhang, W. Liu, and Z. Song, “Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry,” Appl. Opt. 49, 5480–5485 (2010).
    [CrossRef]
  8. W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, “Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT),” Opt. Express 19, 11343–11350 (2011).
  9. L. D. Bollinger, G. Steiberg, and C. B. Zarowin, “Rapid optical figuring surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1618, 14–21 (1991).
    [CrossRef]
  10. D. W. Kim, S. W. Kim, and J. H. Burge, “Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions,” Opt. Express 17, 21850–21866 (2009).
    [CrossRef]
  11. S. F. Soares, D. R. Baselt, J. P. Black, K. C. Jungling, and W. K. Stowell, “Float-polishing process and analysis of float-polished quartz,” Appl. Opt. 33, 89–95 (1994).
    [CrossRef]
  12. Y. Namba and H. Tsuwa, “Mechanism and some applications of ultra-fine finishing,” Ann. CIRP 27, 511–516 (1978).
  13. F. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 9, 214–256 (1927).
  14. R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt. 16, 218–224 (1977).
    [CrossRef]
  15. R. A. Jones, “Grinding and polishing with small tools under computer control,” Proc. SPIE 171, 102–107 (1979).
    [CrossRef]
  16. R. A. Jones, “Fabrication using the computer controlled polisher,” Appl. Opt. 17, 1889–1892 (1978).
    [CrossRef]
  17. R. A. Jones, “Computer controlled polisher demonstration,” Appl. Opt. 19, 2072–2076 (1980).
    [CrossRef]
  18. R. A. Jones, “Computer controlled optical surfacing with orbital tool motion,” Proc. SPIE 540, 41–48 (1985).
    [CrossRef]
  19. R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 222236 (1983).
    [CrossRef]
  20. J. R. Johnson and E. Waluschka, “Optical fabrication-process modeling-analysis tool box,” Proc. SPIE 1333, 106–117 (1990).
    [CrossRef]
  21. D. W. Kim and S. W. Kim, “Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes,” Opt. Express 13, 910–917 (2005).
    [CrossRef]
  22. A. Li, Y. Dai, Z. Zheng, and S. Li, “Study on removing function of the polishing pad of dual—rotator mechanism,” Chin. Mech. Eng. 15, 2077–2081 (2004).
  23. Y. Dai, W. Shang, and X. Zhou, “Effection of the material of a small tool to the removal function in computer control optical polishing,” J. Natl. Univ. Defense Technol. 28, 97–101 (2006).
  24. X. Chen, P. Guo, and J. Ren, “Optimization of removal function in computer controlled optical,” Proc. SPIE 7655, 76551Y (2010).
    [CrossRef]

2011 (1)

W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, “Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT),” Opt. Express 19, 11343–11350 (2011).

2010 (2)

X. Chen, P. Guo, and J. Ren, “Optimization of removal function in computer controlled optical,” Proc. SPIE 7655, 76551Y (2010).
[CrossRef]

Z. Zhang, W. Liu, and Z. Song, “Particle size and surfactant effects on chemical mechanical polishing of glass using silica-based slurry,” Appl. Opt. 49, 5480–5485 (2010).
[CrossRef]

2009 (1)

2008 (1)

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

2006 (1)

Y. Dai, W. Shang, and X. Zhou, “Effection of the material of a small tool to the removal function in computer control optical polishing,” J. Natl. Univ. Defense Technol. 28, 97–101 (2006).

2005 (1)

2004 (2)

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

A. Li, Y. Dai, Z. Zheng, and S. Li, “Study on removing function of the polishing pad of dual—rotator mechanism,” Chin. Mech. Eng. 15, 2077–2081 (2004).

2002 (1)

J.-D. Kim, “Motion analysis of powder particles in EEM using cylindrical polyurethane wheel,” Int. J. Mach. Tools Manuf. 42, 21–28 (2002).
[CrossRef]

1995 (1)

H. Gao, J. Cao, and X. Chen, “Float polishing subnanometer-smooth surface,” Acta Opt. Sin. 15, 824–825 (1995).

1994 (1)

1992 (1)

J. V. Wingerden, H. J. Frankena, and B. A. V. der Zwan, “Production and measurement of superpolished surfaces,” Opt. Eng. 31, 1086–1092 (1992).
[CrossRef]

1991 (1)

L. D. Bollinger, G. Steiberg, and C. B. Zarowin, “Rapid optical figuring surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1618, 14–21 (1991).
[CrossRef]

1990 (1)

J. R. Johnson and E. Waluschka, “Optical fabrication-process modeling-analysis tool box,” Proc. SPIE 1333, 106–117 (1990).
[CrossRef]

1987 (1)

1985 (1)

R. A. Jones, “Computer controlled optical surfacing with orbital tool motion,” Proc. SPIE 540, 41–48 (1985).
[CrossRef]

1983 (1)

R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 222236 (1983).
[CrossRef]

1980 (1)

1979 (1)

R. A. Jones, “Grinding and polishing with small tools under computer control,” Proc. SPIE 171, 102–107 (1979).
[CrossRef]

1978 (2)

Y. Namba and H. Tsuwa, “Mechanism and some applications of ultra-fine finishing,” Ann. CIRP 27, 511–516 (1978).

R. A. Jones, “Fabrication using the computer controlled polisher,” Appl. Opt. 17, 1889–1892 (1978).
[CrossRef]

1977 (1)

1927 (1)

F. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 9, 214–256 (1927).

Ando, M.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Baselt, D. R.

Bennett, J. M.

Black, J. P.

Bollinger, L. D.

L. D. Bollinger, G. Steiberg, and C. B. Zarowin, “Rapid optical figuring surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1618, 14–21 (1991).
[CrossRef]

Burge, J. H.

Cao, J.

H. Gao, J. Cao, and X. Chen, “Float polishing subnanometer-smooth surface,” Acta Opt. Sin. 15, 824–825 (1995).

Chen, X.

X. Chen, P. Guo, and J. Ren, “Optimization of removal function in computer controlled optical,” Proc. SPIE 7655, 76551Y (2010).
[CrossRef]

H. Gao, J. Cao, and X. Chen, “Float polishing subnanometer-smooth surface,” Acta Opt. Sin. 15, 824–825 (1995).

Choi, W. J.

W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, “Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT),” Opt. Express 19, 11343–11350 (2011).

Dai, Y.

Y. Dai, W. Shang, and X. Zhou, “Effection of the material of a small tool to the removal function in computer control optical polishing,” J. Natl. Univ. Defense Technol. 28, 97–101 (2006).

A. Li, Y. Dai, Z. Zheng, and S. Li, “Study on removing function of the polishing pad of dual—rotator mechanism,” Chin. Mech. Eng. 15, 2077–2081 (2004).

der Zwan, B. A. V.

J. V. Wingerden, H. J. Frankena, and B. A. V. der Zwan, “Production and measurement of superpolished surfaces,” Opt. Eng. 31, 1086–1092 (1992).
[CrossRef]

Endo, K.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Frankena, H. J.

J. V. Wingerden, H. J. Frankena, and B. A. V. der Zwan, “Production and measurement of superpolished surfaces,” Opt. Eng. 31, 1086–1092 (1992).
[CrossRef]

Fukuda, Y.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Gao, H.

H. Gao, J. Cao, and X. Chen, “Float polishing subnanometer-smooth surface,” Acta Opt. Sin. 15, 824–825 (1995).

Guo, P.

X. Chen, P. Guo, and J. Ren, “Optimization of removal function in computer controlled optical,” Proc. SPIE 7655, 76551Y (2010).
[CrossRef]

Ishikawa, T.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Johnson, J. R.

J. R. Johnson and E. Waluschka, “Optical fabrication-process modeling-analysis tool box,” Proc. SPIE 1333, 106–117 (1990).
[CrossRef]

Jones, R. A.

R. A. Jones, “Computer controlled optical surfacing with orbital tool motion,” Proc. SPIE 540, 41–48 (1985).
[CrossRef]

R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 222236 (1983).
[CrossRef]

R. A. Jones, “Computer controlled polisher demonstration,” Appl. Opt. 19, 2072–2076 (1980).
[CrossRef]

R. A. Jones, “Grinding and polishing with small tools under computer control,” Proc. SPIE 171, 102–107 (1979).
[CrossRef]

R. A. Jones, “Fabrication using the computer controlled polisher,” Appl. Opt. 17, 1889–1892 (1978).
[CrossRef]

R. A. Jones, “Optimization of computer controlled polishing,” Appl. Opt. 16, 218–224 (1977).
[CrossRef]

Jung, S. P.

W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, “Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT),” Opt. Express 19, 11343–11350 (2011).

Jungling, K. C.

Kanaoka, M.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Kim, D. W.

Kim, J.-D.

J.-D. Kim, “Motion analysis of powder particles in EEM using cylindrical polyurethane wheel,” Int. J. Mach. Tools Manuf. 42, 21–28 (2002).
[CrossRef]

Kim, S. W.

Lee, B. H.

W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, “Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT),” Opt. Express 19, 11343–11350 (2011).

Li, A.

A. Li, Y. Dai, Z. Zheng, and S. Li, “Study on removing function of the polishing pad of dual—rotator mechanism,” Chin. Mech. Eng. 15, 2077–2081 (2004).

Li, S.

A. Li, Y. Dai, Z. Zheng, and S. Li, “Study on removing function of the polishing pad of dual—rotator mechanism,” Chin. Mech. Eng. 15, 2077–2081 (2004).

Liu, C.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Liu, W.

Mimura, H.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Mori, Y.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Namba, Y.

J. M. Bennett, J. J. Shaffer, Y. Shibano, and Y. Namba, “Float polishing of optical materials,” Appl. Opt. 26, 696–703 (1987).
[CrossRef]

Y. Namba and H. Tsuwa, “Mechanism and some applications of ultra-fine finishing,” Ann. CIRP 27, 511–516 (1978).

Nomura, K.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Preston, F.

F. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 9, 214–256 (1927).

Ren, J.

X. Chen, P. Guo, and J. Ren, “Optimization of removal function in computer controlled optical,” Proc. SPIE 7655, 76551Y (2010).
[CrossRef]

Saito, A.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Sano, Y.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Shaffer, J. J.

Shang, W.

Y. Dai, W. Shang, and X. Zhou, “Effection of the material of a small tool to the removal function in computer control optical polishing,” J. Natl. Univ. Defense Technol. 28, 97–101 (2006).

Shibano, Y.

Shin, J. G.

W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, “Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT),” Opt. Express 19, 11343–11350 (2011).

Soares, S. F.

Song, Z.

Souvorov, A.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Steiberg, G.

L. D. Bollinger, G. Steiberg, and C. B. Zarowin, “Rapid optical figuring surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1618, 14–21 (1991).
[CrossRef]

Stowell, W. K.

Takino, H.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Tamasaku, K.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Tsuwa, H.

Y. Namba and H. Tsuwa, “Mechanism and some applications of ultra-fine finishing,” Ann. CIRP 27, 511–516 (1978).

Waluschka, E.

J. R. Johnson and E. Waluschka, “Optical fabrication-process modeling-analysis tool box,” Proc. SPIE 1333, 106–117 (1990).
[CrossRef]

Wingerden, J. V.

J. V. Wingerden, H. J. Frankena, and B. A. V. der Zwan, “Production and measurement of superpolished surfaces,” Opt. Eng. 31, 1086–1092 (1992).
[CrossRef]

Yabashi, M.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Yamamura, K.

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Yamauchi, K.

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Yang, D.

W. J. Choi, S. P. Jung, J. G. Shin, D. Yang, and B. H. Lee, “Characterization of wet pad surface in chemical mechanical polishing (CMP) process with full-field optical coherence tomography (FF-OCT),” Opt. Express 19, 11343–11350 (2011).

Zarowin, C. B.

L. D. Bollinger, G. Steiberg, and C. B. Zarowin, “Rapid optical figuring surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1618, 14–21 (1991).
[CrossRef]

Zhang, Z.

Zheng, Z.

A. Li, Y. Dai, Z. Zheng, and S. Li, “Study on removing function of the polishing pad of dual—rotator mechanism,” Chin. Mech. Eng. 15, 2077–2081 (2004).

Zhou, X.

Y. Dai, W. Shang, and X. Zhou, “Effection of the material of a small tool to the removal function in computer control optical polishing,” J. Natl. Univ. Defense Technol. 28, 97–101 (2006).

Acta Opt. Sin. (1)

H. Gao, J. Cao, and X. Chen, “Float polishing subnanometer-smooth surface,” Acta Opt. Sin. 15, 824–825 (1995).

Ann. CIRP (1)

Y. Namba and H. Tsuwa, “Mechanism and some applications of ultra-fine finishing,” Ann. CIRP 27, 511–516 (1978).

Appl. Opt. (6)

Chin. Mech. Eng. (1)

A. Li, Y. Dai, Z. Zheng, and S. Li, “Study on removing function of the polishing pad of dual—rotator mechanism,” Chin. Mech. Eng. 15, 2077–2081 (2004).

Int. J. Mach. Tools Manuf. (1)

J.-D. Kim, “Motion analysis of powder particles in EEM using cylindrical polyurethane wheel,” Int. J. Mach. Tools Manuf. 42, 21–28 (2002).
[CrossRef]

J. Natl. Univ. Defense Technol. (1)

Y. Dai, W. Shang, and X. Zhou, “Effection of the material of a small tool to the removal function in computer control optical polishing,” J. Natl. Univ. Defense Technol. 28, 97–101 (2006).

J. Soc. Glass Technol. (1)

F. Preston, “The theory and design of plate glass polishing machines,” J. Soc. Glass Technol. 9, 214–256 (1927).

Opt. Eng. (2)

J. V. Wingerden, H. J. Frankena, and B. A. V. der Zwan, “Production and measurement of superpolished surfaces,” Opt. Eng. 31, 1086–1092 (1992).
[CrossRef]

R. A. Jones, “Computer-controlled polishing of telescope mirror segments,” Opt. Eng. 22, 222236 (1983).
[CrossRef]

Opt. Express (3)

Proc. SPIE (6)

L. D. Bollinger, G. Steiberg, and C. B. Zarowin, “Rapid optical figuring surfaces with plasma assisted chemical etching (PACE),” Proc. SPIE 1618, 14–21 (1991).
[CrossRef]

J. R. Johnson and E. Waluschka, “Optical fabrication-process modeling-analysis tool box,” Proc. SPIE 1333, 106–117 (1990).
[CrossRef]

R. A. Jones, “Grinding and polishing with small tools under computer control,” Proc. SPIE 171, 102–107 (1979).
[CrossRef]

R. A. Jones, “Computer controlled optical surfacing with orbital tool motion,” Proc. SPIE 540, 41–48 (1985).
[CrossRef]

X. Chen, P. Guo, and J. Ren, “Optimization of removal function in computer controlled optical,” Proc. SPIE 7655, 76551Y (2010).
[CrossRef]

Y. Mori, K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, and T. Ishikawa, “Development of a figure correction method having spatial resolution close to 0.1 mm,” Proc. SPIE 5193, 105–111 (2004).
[CrossRef]

Surf. Interface Anal. (1)

M. Kanaoka, C. Liu, K. Nomura, M. Ando, H. Takino, Y. Fukuda, Y. Mori, H. Mimura, and K. Yamauchi, “Processing efficiency of elastic emission machining for low-thermal-expansion material,” Surf. Interface Anal. 40, 1002–1006 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of the polishing head of AFP.

Fig. 2.
Fig. 2.

Dual-rotor polishing mechanism.

Fig. 3.
Fig. 3.

Motion trajectory of dual-rotor polishing head. (a) Dual-rotor mechanism and (b) dual-rotor path.

Fig. 4.
Fig. 4.

Connection of different sections in dual-rotor tool path.

Fig. 5.
Fig. 5.

Motion analysis diagram of the dual-rotor tool path.

Fig. 6.
Fig. 6.

Comparison between the theoretical removal function and the dual-rotor path removal shape. (a) Theoretical removal function and (b) dual-rotor path removal shape.

Fig. 7.
Fig. 7.

Profile figure for removal error analysis.

Fig. 8.
Fig. 8.

Relationship between the relative sampling interval and the removal error.

Fig. 9.
Fig. 9.

Relationship between the removal function shape and the removal error.

Fig. 10.
Fig. 10.

Relationship between the relative motion velocity and the removal error.

Fig. 11.
Fig. 11.

Final generated dual-rotor path.

Fig. 12.
Fig. 12.

Surface figures of the workpiece. (a) Before processing, (b) after processing, and (c) calculated in theory.

Fig. 13.
Fig. 13.

Surface roughness of the workpiece. (a) Before processing and (b) after processing.

Tables (1)

Tables Icon

Table 1. Processing Parameters in AFP Experiment

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δh(x,y)=k·v(x,y)·p(x,y),
W(x,y)=R(x,y)**T(x,y),
x(t)=r1·cos(w1*t)+φ(t)y(t)=r1·sin(w1*t)1+ψ(t)2,
xi+1(t)=r1·cos(w1*t+θi)+ki+1*tyi+1(t)=r1·sin(w1*t+θi),
{x=r1·cos(w1t)+k1·ty=r1·sin(w1t)+k2·t.
{x=r1·w1sin(w1t)+k1y=r1·w1cos(w1t)+k2.
{ve=x2+y2θe=arctan(yx).
{vr=r·w2θr=πw2t,
r=rx2+ry2=(kxO2x)2+(kyO2y)2.
{vx=ve·cosθe+vr·cosθrvy=ve·sinθe+vr·sinθr,
v=vx2+vy2.
H(t)=KP0tv(t)dt.
δ=iSζijRRj.
L=LD,
V=Vv,

Metrics