Abstract

We have proposed and fabricated a new mid-infrared reflector using the guided-mode resonance (GMR). The GMR reflector consists of subwavelength Ge grating on GaAs substrate with a low-refractive-index SiOx layer in between. With a total thickness of about 2 μm, a near-100% reflectivity at 8 μm has been obtained both theoretically and experimentally.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010).
    [CrossRef]
  2. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
    [CrossRef]
  3. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
    [CrossRef]
  4. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  5. S. Peng and G. M. Morris, “Resonant scattering from two-dimensional gratings,” J. Opt. Soc. Am. A 13, 993–1005 (1996).
    [CrossRef]
  6. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996).
    [CrossRef]
  7. Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
    [CrossRef]
  8. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
    [CrossRef]
  9. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
    [CrossRef]
  10. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating-waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
    [CrossRef]
  11. K. W. Lai, Y. S. Lee, Y. J. Fu, and S. D. Lin, “Selecting detection wavelength of resonant cavity-enhanced photodetectors by guided-mode resonance reflectors,” Opt. Express 20, 3572–3579 (2012).
    [CrossRef]
  12. V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36, 1704–1706 (2011).
    [CrossRef]
  13. L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
    [CrossRef]
  14. H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009).
    [CrossRef]
  15. C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetector with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
    [CrossRef]
  16. O. Parriaux, T. Kaempfe, F. Garet, and J. L. Coutaz, “Narrow band, large angular width resonant reflection from a periodic high index grid at terahertz frequency,” Opt. Express 20, 28070–28081 (2012).
    [CrossRef]
  17. I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  19. RSoft Design Group’s website for DiffractionMOD simulation tool, http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=DiffractMOD .
  20. N. Yamamoto and S. Noda, “Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5–10 μm wavelength region,” Jpn. J. Appl. Phys. 38, 1282–1285 (1999).
    [CrossRef]
  21. C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006).
    [CrossRef]
  22. T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
    [CrossRef]

2013 (1)

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetector with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[CrossRef]

2012 (3)

2011 (1)

2010 (2)

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010).
[CrossRef]

2009 (2)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009).
[CrossRef]

2006 (1)

C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006).
[CrossRef]

2004 (2)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

1999 (1)

N. Yamamoto and S. Noda, “Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5–10 μm wavelength region,” Jpn. J. Appl. Phys. 38, 1282–1285 (1999).
[CrossRef]

1997 (1)

1996 (2)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

1990 (1)

1985 (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
[CrossRef]

1981 (1)

Asano, T.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

Asatryan, A. A.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

Bagby, J. S.

Barve, A. V.

A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010).
[CrossRef]

Botten, L. C.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

Campbell, J. C.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

Chan, M.

C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006).
[CrossRef]

Chang-Hasnain, C. J.

V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36, 1704–1706 (2011).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Chase, C.

V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36, 1704–1706 (2011).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

Coutaz, J. L.

de Sterke, C. M.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Friesem, A. A.

Fu, Y. J.

Garet, F.

Gaylord, T. K.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[CrossRef]

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
[CrossRef]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[CrossRef]

Hu, C.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Johnson, E. G.

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Kaempfe, T.

Karagodsky, V.

V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett. 36, 1704–1706 (2011).
[CrossRef]

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

Kok, C. W.

C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006).
[CrossRef]

Krishna, S.

A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010).
[CrossRef]

Lai, K. W.

Langtry, T. N.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

Lee, C. P.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009).
[CrossRef]

Lee, S. J.

A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010).
[CrossRef]

Lee, Y. S.

Li, Y.

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Lin, S. D.

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetector with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[CrossRef]

K. W. Lai, Y. S. Lee, Y. J. Fu, and S. D. Lin, “Selecting detection wavelength of resonant cavity-enhanced photodetectors by guided-mode resonance reflectors,” Opt. Express 20, 3572–3579 (2012).
[CrossRef]

Ling, H. S.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009).
[CrossRef]

Liu, M.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

Lo, M. C.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009).
[CrossRef]

Madhukar, A.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

Magnusson, R.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided-mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A 7, 1470–1474 (1990).
[CrossRef]

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

McPhedran, R. C.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

Moewe, M.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

Noda, S.

N. Yamamoto and S. Noda, “Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5–10 μm wavelength region,” Jpn. J. Appl. Phys. 38, 1282–1285 (1999).
[CrossRef]

Noh, S. K.

A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010).
[CrossRef]

Parriaux, O.

Peng, S.

Pesala, B.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

Poutous, M. K.

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Pung, A. J.

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Rosenblatt, D.

Sedgwick, F. G.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

Sharon, A.

Srimathi, I. R.

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
[CrossRef]

Sychugov, V. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
[CrossRef]

Tishchenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
[CrossRef]

Wang, C. C.

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetector with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[CrossRef]

Wang, S. S.

Wang, S. Y.

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009).
[CrossRef]

White, T. P.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

Wong, C. K.

C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006).
[CrossRef]

Wong, H.

C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006).
[CrossRef]

Woodward, R. H.

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Yamamoto, N.

N. Yamamoto and S. Noda, “Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5–10 μm wavelength region,” Jpn. J. Appl. Phys. 38, 1282–1285 (1999).
[CrossRef]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[CrossRef]

Zhang, Y.

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

Zhou, Y.

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Asano, C. Hu, Y. Zhang, M. Liu, J. C. Campbell, and A. Madhukar, “Design consideration and demonstration of resonant-cavity-enhanced quantum dot infrared photodetector in mid-infrared wavelength regime (3–5 μm),” IEEE J. Quantum Electron. 46, 1484–1491 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhou, M. C. Y. Huang, C. Chase, V. Karagodsky, M. Moewe, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “High-index-contrast grating (HCG) and its applications in optoelectronic devices,” IEEE J. Sel. Top. Quantum Electron. 15, 1485–1499 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004).
[CrossRef]

H. S. Ling, S. Y. Wang, C. P. Lee, and M. C. Lo, “Long-wavelength quantum-dot infrared photodetectors with operating temperature over 200 K,” IEEE Photon. Technol. Lett. 21, 118–120 (2009).
[CrossRef]

J. Appl. Phys. (1)

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetector with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
[CrossRef]

J. Cryst. Growth (1)

C. K. Wong, H. Wong, C. W. Kok, and M. Chan, “Silicon oxynitride prepared by chemical deposition as optical waveguide materials,” J. Cryst. Growth 288, 171–175 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

Jpn. J. Appl. Phys. (1)

N. Yamamoto and S. Noda, “Fabrication and optical properties of one period of a three-dimensional photonic crystal operating in the 5–10 μm wavelength region,” Jpn. J. Appl. Phys. 38, 1282–1285 (1999).
[CrossRef]

Laser Photon. Rev. (1)

A. V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, “Review of current progress in quantum dot infrared photodetectors,” Laser Photon. Rev. 4, 738–750 (2010).
[CrossRef]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6, 432–439 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. E (1)

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E 70, 056606 (2004).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
[CrossRef]

Other (2)

RSoft Design Group’s website for DiffractionMOD simulation tool, http://www.rsoftdesign.com/products.php?sub=Component+Design&itm=DiffractMOD .

I. R. Srimathi, M. K. Poutous, A. J. Pung, Y. Li, R. H. Woodward, E. G. Johnson, and R. Magnusson, “Mid-infrared guided-mode resonance reflectors for applications in high power laser systems,” in IEEE International Photonics Conference (IPC) (2012), pp. 822–823.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic structure of the (a) GMR reflector and (b) its top view. The hole radius is r and the center-to-center distance of the holes is a.

Fig. 2.
Fig. 2.

Simulated reflectivity spectra for various r/a ratios.

Fig. 3.
Fig. 3.

Simulated electric field distributions for three wavelengths for the device of r/a=0.35. The two distributions along the center (C) and side (S) lines are plotted for 8.00 μm, as indicated by the unit cell in the inset. The spectra are vertically shifted for clarity.

Fig. 4.
Fig. 4.

(a) Optical microscopic and (b) SEM images of one fabricated sample (r/aratio=0.33). (c) Schematic setup for reflectivity spectra measurement.

Fig. 5.
Fig. 5.

Measured reflectivity spectra for various r/a ratios.

Metrics