Abstract

In this paper, a nondestructive laser ultrasonic technique is used to generate and detect broadband surface acoustic waves (SAWs) on human teeth with different demineralization treatment. A scanning laser line-source technique is used to generate a series of SAW signals for obtaining the dispersion spectrum through a two-dimensional fast Fourier translation method. The experimental dispersion curves of SAWs are studied for evaluating the elastic properties of the sound tooth and carious tooth. The propagation and dispersion of SAWs in human teeth are also been studied using the finite element method. Results from numerical simulation and experiment are compared and discussed, and the elastic properties of teeth with different conditions are evaluated by combining the simulation and experimental results.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Seiwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007).
    [CrossRef]
  2. A. I. Ismail, “Clinical diagnosis of precavitated carious lesions,” Community Dent. Oral Epidemiol. 25, 13–23 (1997).
    [CrossRef]
  3. A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83, C55–C66 (2004).
    [CrossRef]
  4. J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnosic and management methods,” J. Dent. Educ. 65, 960–968 (2001).
  5. L. H. He and M. V. Swain, “Nanoindentation derived stress–strain properties of dental materials,” Dent. Mater. 23, 814–821 (2007).
  6. D. Low and M. V. Swain, “Mechanical properties of dental investment materials,” J. Mater. Sci. Mater. Med. 11, 399–405 (2000).
    [CrossRef]
  7. L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975).
    [CrossRef]
  8. F. Lakestani, J. F. Coste, and R. Denis, “Application of ultrasonic Rayleigh waves to thickness measurement of metallic coatings,” NDT & E Int. 28, 171–178 (1995).
    [CrossRef]
  9. J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007).
    [CrossRef]
  10. T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics 37, 23–30 (1999).
    [CrossRef]
  11. C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
    [CrossRef]
  12. K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011).
    [CrossRef]
  13. S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
    [CrossRef]
  14. K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in Proceedings of 2003 IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 799–802.
  15. K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).
  16. B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).
  17. C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
    [CrossRef]
  18. M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
    [CrossRef]
  19. C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
    [CrossRef]
  20. M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dentistry 28, 187–191 (2000).
    [CrossRef]
  21. C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).
  22. J. W. Wagner, J. B. Deaton, and J. B. Spicer, “Generation of ultrasound by repetitively Q-switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988).
    [CrossRef]
  23. J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
    [CrossRef]
  24. A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
    [CrossRef]
  25. H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48, 1444–1451 (2009).
    [CrossRef]
  26. R. R. An, X. S. Luo, and Z. H. Shen, “Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue,” Appl. Opt. 51, 7869–7876 (2012).
    [CrossRef]
  27. D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
    [CrossRef]
  28. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
    [CrossRef]
  29. H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
    [CrossRef]
  30. D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
    [CrossRef]
  31. B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
    [CrossRef]
  32. L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
    [CrossRef]
  33. H. C. Wang, S. Fleming, S. Law, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Proceedings of Australian Conference on Optical Fibre Technology/Australian Optical Society (IEEE, 2006), pp. 99–101.
  34. D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996).
    [CrossRef]
  35. J. Arends and J. Christoffersen, “The nature of early caries lesions in enamel,” J. Dent. Res. 65, 2–11 (1986).
    [CrossRef]
  36. D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the measurement of propagating multimode signals,” J. Acoust. Soc. Am. 89, 1159–1168 (1991).
    [CrossRef]
  37. D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calc. Tiss. Res. 17, 129–137 (1975).
    [CrossRef]

2012 (2)

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

R. R. An, X. S. Luo, and Z. H. Shen, “Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue,” Appl. Opt. 51, 7869–7876 (2012).
[CrossRef]

2011 (2)

K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011).
[CrossRef]

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

2010 (1)

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

2009 (3)

2007 (4)

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

R. H. Seiwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007).
[CrossRef]

L. H. He and M. V. Swain, “Nanoindentation derived stress–strain properties of dental materials,” Dent. Mater. 23, 814–821 (2007).

J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007).
[CrossRef]

2006 (2)

C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

2005 (1)

C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
[CrossRef]

2004 (1)

A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83, C55–C66 (2004).
[CrossRef]

2003 (3)

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
[CrossRef]

D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
[CrossRef]

2001 (1)

J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnosic and management methods,” J. Dent. Educ. 65, 960–968 (2001).

2000 (3)

D. Low and M. V. Swain, “Mechanical properties of dental investment materials,” J. Mater. Sci. Mater. Med. 11, 399–405 (2000).
[CrossRef]

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dentistry 28, 187–191 (2000).
[CrossRef]

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

1999 (1)

T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics 37, 23–30 (1999).
[CrossRef]

1997 (1)

A. I. Ismail, “Clinical diagnosis of precavitated carious lesions,” Community Dent. Oral Epidemiol. 25, 13–23 (1997).
[CrossRef]

1996 (1)

D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996).
[CrossRef]

1995 (1)

F. Lakestani, J. F. Coste, and R. Denis, “Application of ultrasonic Rayleigh waves to thickness measurement of metallic coatings,” NDT & E Int. 28, 171–178 (1995).
[CrossRef]

1992 (1)

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

1991 (1)

D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the measurement of propagating multimode signals,” J. Acoust. Soc. Am. 89, 1159–1168 (1991).
[CrossRef]

1989 (1)

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

1988 (1)

1986 (1)

J. Arends and J. Christoffersen, “The nature of early caries lesions in enamel,” J. Dent. Res. 65, 2–11 (1986).
[CrossRef]

1975 (2)

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calc. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975).
[CrossRef]

Achenbach, J. D.

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
[CrossRef]

Alleyne, D.

D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the measurement of propagating multimode signals,” J. Acoust. Soc. Am. 89, 1159–1168 (1991).
[CrossRef]

Ambroziak, A.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

An, R. R.

Arends, J.

J. Arends and J. Christoffersen, “The nature of early caries lesions in enamel,” J. Dent. Res. 65, 2–11 (1986).
[CrossRef]

Bader, J. D.

J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnosic and management methods,” J. Dent. Educ. 65, 960–968 (2001).

Blodgett, D. W.

D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
[CrossRef]

Bonito, A. J.

J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnosic and management methods,” J. Dent. Educ. 65, 960–968 (2001).

Bosch, J. J. T.

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calc. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

Brandt, J.

K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in Proceedings of 2003 IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 799–802.

Briggs, G. A.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

Brown, E. R.

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Cawley, P.

D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the measurement of propagating multimode signals,” J. Acoust. Soc. Am. 89, 1159–1168 (1991).
[CrossRef]

Christoffersen, J.

J. Arends and J. Christoffersen, “The nature of early caries lesions in enamel,” J. Dent. Res. 65, 2–11 (1986).
[CrossRef]

Coste, J. F.

F. Lakestani, J. F. Coste, and R. Denis, “Application of ultrasonic Rayleigh waves to thickness measurement of metallic coatings,” NDT & E Int. 28, 171–178 (1995).
[CrossRef]

Cui, Y. P.

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

Culjat, M.

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Deaton, J. B.

Denis, R.

F. Lakestani, J. F. Coste, and R. Denis, “Application of ultrasonic Rayleigh waves to thickness measurement of metallic coatings,” NDT & E Int. 28, 171–178 (1995).
[CrossRef]

Dogon, I. L.

L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975).
[CrossRef]

Drain, L. E.

C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).

Featherstone, J. D. B.

D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996).
[CrossRef]

Fejerskov, O.

L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975).
[CrossRef]

Fleming, S.

H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48, 1444–1451 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, S. Law, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Proceedings of Australian Conference on Optical Fibre Technology/Australian Optical Society (IEEE, 2006), pp. 99–101.

Fried, D.

D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996).
[CrossRef]

Gao, W.

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

Glena, R. E.

D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996).
[CrossRef]

Glorieux, C.

J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007).
[CrossRef]

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

Goossens, J.

J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007).
[CrossRef]

Guan, J. F.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

He, L. H.

L. H. He and M. V. Swain, “Nanoindentation derived stress–strain properties of dental materials,” Dent. Mater. 23, 814–821 (2007).

Hein, H. J.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Hess, P.

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

Huang, T.

H. C. Wang, S. Fleming, S. Law, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Proceedings of Australian Conference on Optical Fibre Technology/Australian Optical Society (IEEE, 2006), pp. 99–101.

Hurley, D. H.

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

Huysmans, M. C. D. N. J. M.

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dentistry 28, 187–191 (2000).
[CrossRef]

Ismail, A. I.

R. H. Seiwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007).
[CrossRef]

A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83, C55–C66 (2004).
[CrossRef]

A. I. Ismail, “Clinical diagnosis of precavitated carious lesions,” Community Dent. Oral Epidemiol. 25, 13–23 (1997).
[CrossRef]

John, C.

C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
[CrossRef]

C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
[CrossRef]

Kempf, K.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Kennedy, J. R.

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

Kruger, S. E.

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

Lakestani, F.

F. Lakestani, J. F. Coste, and R. Denis, “Application of ultrasonic Rayleigh waves to thickness measurement of metallic coatings,” NDT & E Int. 28, 171–178 (1995).
[CrossRef]

Lauriks, W.

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

Law, S.

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, S. Law, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Proceedings of Australian Conference on Optical Fibre Technology/Australian Optical Society (IEEE, 2006), pp. 99–101.

Leclaire, P.

J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007).
[CrossRef]

Lee, Y. C.

Liu, Y. H.

T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics 37, 23–30 (1999).
[CrossRef]

Low, D.

D. Low and M. V. Swain, “Mechanical properties of dental investment materials,” J. Mater. Sci. Mater. Med. 11, 399–405 (2000).
[CrossRef]

Lu, J.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Luo, X. S.

Maev, R. G.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Maurer, P.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Neubrand, A.

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

Ni, X. W.

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Park, S. K.

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

Peck, S. D.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

Pitts, N. B.

R. H. Seiwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007).
[CrossRef]

Raum, K.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in Proceedings of 2003 IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 799–802.

Reese, S. J.

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

Rostyne, K. V.

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

Rowe, J. M.

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

Saxton, C. A.

L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975).
[CrossRef]

Schebert, J.

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

Scruby, C. S.

C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).

Seiwitz, R. H.

R. H. Seiwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007).
[CrossRef]

Seka, W.

D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996).
[CrossRef]

Shen, Z. H.

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

R. R. An, X. S. Luo, and Z. H. Shen, “Numerical simulation of the influence of the elastic modulus of a tumor on laser-induced ultrasonics in soft tissue,” Appl. Opt. 51, 7869–7876 (2012).
[CrossRef]

K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011).
[CrossRef]

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Shugars, D. A.

J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnosic and management methods,” J. Dent. Educ. 65, 960–968 (2001).

Silverstone, L. M.

L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975).
[CrossRef]

Singh, R. S.

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Slak, B.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Spicer, J. B.

Spitzer, D.

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calc. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

Strumban, E.

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Sun, K. H.

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011).
[CrossRef]

Swain, M.

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

Swain, M. V.

L. H. He and M. V. Swain, “Nanoindentation derived stress–strain properties of dental materials,” Dent. Mater. 23, 814–821 (2007).

D. Low and M. V. Swain, “Mechanical properties of dental investment materials,” J. Mater. Sci. Mater. Med. 11, 399–405 (2000).
[CrossRef]

Telschow, K. L.

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

Thijssen, J. M.

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dentistry 28, 187–191 (2000).
[CrossRef]

Thoen, J.

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

Utegulov, Z.

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

Wagner, J. W.

Wang, H. C.

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, and Y. C. Lee, “Simple, all-optical, noncontact, depth-selective, narrowband surface acoustic wave measurement system for evaluating the Rayleigh velocity of small samples or areas,” Appl. Opt. 48, 1444–1451 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

H. C. Wang, S. Fleming, S. Law, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Proceedings of Australian Conference on Optical Fibre Technology/Australian Optical Society (IEEE, 2006), pp. 99–101.

Wang, J. J.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Wu, T. T.

T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics 37, 23–30 (1999).
[CrossRef]

Xu, B. Q.

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Xu, X. D.

J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007).
[CrossRef]

Xue, J.

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Laser ultrasonic surface wave dispersion technique for non-destructive evaluation of human dental enamel,” Opt. Express 17, 15592–15607 (2009).
[CrossRef]

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

Yoon, D. C.

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

Yuan, L.

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011).
[CrossRef]

Acta Bioeng. Biomech. (1)

B. Slak, A. Ambroziak, E. Strumban, and R. G. Maev, “Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure,” Acta Bioeng. Biomech. 13, 65–70 (2011).

Appl. Opt. (3)

Calc. Tiss. Res. (1)

D. Spitzer and J. J. T. Bosch, “The absorption and scattering of light in bovine and human dental enamel,” Calc. Tiss. Res. 17, 129–137 (1975).
[CrossRef]

Caries Res. (1)

L. M. Silverstone, C. A. Saxton, I. L. Dogon, and O. Fejerskov, “Variation in the pattern of acid etching of human dental enamel examined by scanning electron microscopy,” Caries Res. 9, 373–387 (1975).
[CrossRef]

Chin. J. Lasers (1)

L. Yuan, K. H. Sun, Z. H. Shen, X. W. Ni, and Y. P. Cui, “Finite element simulation for laser-induced SAW propagation in tooth,” Chin. J. Lasers 39, 0104001 (2012).
[CrossRef]

Community Dent. Oral Epidemiol. (1)

A. I. Ismail, “Clinical diagnosis of precavitated carious lesions,” Community Dent. Oral Epidemiol. 25, 13–23 (1997).
[CrossRef]

Dent. Mater. (2)

L. H. He and M. V. Swain, “Nanoindentation derived stress–strain properties of dental materials,” Dent. Mater. 23, 814–821 (2007).

K. Raum, K. Kempf, H. J. Hein, J. Schebert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro-A scanning acoustic microscopy study,” Dent. Mater. 23, 1221–1228 (2007).

IEEE Trans. Med. Imaging (1)

M. Culjat, R. S. Singh, D. C. Yoon, and E. R. Brown, “Imaging of human tooth enamel using ultrasound,” IEEE Trans. Med. Imaging 22, 526–529 (2003).
[CrossRef]

J. Acoust. Soc. Am. (2)

D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the measurement of propagating multimode signals,” J. Acoust. Soc. Am. 89, 1159–1168 (1991).
[CrossRef]

D. W. Blodgett, “Applications of laser-based ultrasonics to the characterization of the internal structure of teeth,” J. Acoust. Soc. Am. 114, 542–549 (2003).
[CrossRef]

J. Appl. Phys. (4)

D. H. Hurley, S. J. Reese, S. K. Park, Z. Utegulov, J. R. Kennedy, and K. L. Telschow, “In situ laser-based resonant ultrasound measurements of microstructure mediated mechanical property evolution,” J. Appl. Phys. 107, 063510 (2010).
[CrossRef]

J. Goossens, P. Leclaire, X. D. Xu, and C. Glorieux, “Surface acoustic wave depth profiling of a functionally traded material,” J. Appl. Phys. 102, 053508 (2007).
[CrossRef]

C. Glorieux, W. Gao, S. E. Kruger, K. V. Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88, 4394–4400 (2000).
[CrossRef]

A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: elastic properties of surface layers,” J. Appl. Phys. 71, 227–238 (1992).
[CrossRef]

J. Biomech. (1)

C. John, “The laterally varying ultrasonic velocity in the dentin of human teeth,” J. Biomech. 39, 2388–2396 (2006).
[CrossRef]

J. Biomed. Opt. (1)

H. C. Wang, S. Fleming, Y. C. Lee, S. Law, M. Swain, and J. Xue, “Noncontact, nondestructive elasticity evaluation of sound and demineralised human dental enamel using laser ultrasonic surface wave dispersion technique,” J. Biomed. Opt. 14, 054046 (2009).
[CrossRef]

J. Dent. Educ. (1)

J. D. Bader, D. A. Shugars, and A. J. Bonito, “Systematic reviews of selected dental caries diagnosic and management methods,” J. Dent. Educ. 65, 960–968 (2001).

J. Dent. Res. (3)

A. I. Ismail, “Visual and visuo-tactile detection of dental caries,” J. Dent. Res. 83, C55–C66 (2004).
[CrossRef]

S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” J. Dent. Res. 68, 107–112 (1989).
[CrossRef]

J. Arends and J. Christoffersen, “The nature of early caries lesions in enamel,” J. Dent. Res. 65, 2–11 (1986).
[CrossRef]

J. Dentistry (1)

M. C. D. N. J. M. Huysmans and J. M. Thijssen, “Ultrasonic measurement of enamel thickness: a tool for monitoring dental erosion?” J. Dentistry 28, 187–191 (2000).
[CrossRef]

J. Mater. Sci. Mater. Med. (1)

D. Low and M. V. Swain, “Mechanical properties of dental investment materials,” J. Mater. Sci. Mater. Med. 11, 399–405 (2000).
[CrossRef]

J. Mech. Phys. Solids (1)

J. D. Achenbach, “Laser excitation of surface wave motion,” J. Mech. Phys. Solids 51, 1885–1902 (2003).
[CrossRef]

Lancet (1)

R. H. Seiwitz, A. I. Ismail, and N. B. Pitts, “Dental caries,” Lancet 369, 51–59 (2007).
[CrossRef]

NDT & E Int. (1)

F. Lakestani, J. F. Coste, and R. Denis, “Application of ultrasonic Rayleigh waves to thickness measurement of metallic coatings,” NDT & E Int. 28, 171–178 (1995).
[CrossRef]

Opt. Eng. (1)

D. Fried, W. Seka, R. E. Glena, and J. D. B. Featherstone, “Thermal response of hard dental tissues to 9- through 11-μm CO2-laser irradiation,” Opt. Eng. 35, 1976–1984 (1996).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, “Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system,” Opt. Laser Technol. 38, 138–145 (2006).
[CrossRef]

Proc. SPIE (1)

K. H. Sun, L. Yuan, Z. H. Shen, and X. W. Ni, “Experimental study of functionally graded materials of Fe/Al2O3 compound coatings on the steel substrate by using the laser ultrasound method,” Proc. SPIE 8192, 81922T (2011).
[CrossRef]

Ultrasonics (2)

T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics 37, 23–30 (1999).
[CrossRef]

C. John, “Directing ultrasound at the cemento-enamel junction (CEJ) of human teeth: I. Asymmetry of ultrasonic path lengths,” Ultrasonics 43, 467–479 (2005).
[CrossRef]

Other (3)

C. S. Scruby and L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, 1990).

H. C. Wang, S. Fleming, S. Law, and T. Huang, “Selection of an appropriate laser wavelength for launching surface acoustic waves on tooth enamel,” in Proceedings of Australian Conference on Optical Fibre Technology/Australian Optical Society (IEEE, 2006), pp. 99–101.

K. Raum and J. Brandt, “High frequency acoustic dispersion of surface waves using time-resolved broadband microscopy,” in Proceedings of 2003 IEEE Symposium on Ultrasonics (IEEE, 2003), pp. 799–802.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Physics model of SAW propagating on human tooth.

Fig. 2.
Fig. 2.

Illustration showing the positions of the SAW generation and detection on the human tooth.

Fig. 3.
Fig. 3.

Schematic diagram for experimental setup. 1, Beam splitter; 2, 266 nm reflector; 3, Energy probe; 4, Photodiode; 5, Cylindrical lens; 6, Translation platform; 7, Triple prism; and 8, Laser sensor head.

Fig. 4.
Fig. 4.

Calculated temperature distribution in enamel for a laser pulse with pulsewidth of 7 ns and a maximum power density of 108W/cm2.

Fig. 5.
Fig. 5.

Numerical simulation results of ultrasound waves with different distances from the line source on the surface of (a) sound tooth and (b) carious tooth with ω=0.6.

Fig. 6.
Fig. 6.

Experimental results of ultrasound waves at different distances from the line source on the surface of (a) tooth-1, (b) tooth-2, and (c) tooth-3.

Fig. 7.
Fig. 7.

Frequency spectra of SAW in numerical simulation and experiment.

Fig. 8.
Fig. 8.

(a) Numerical simulation results of SAW’s dispersion curves on teeth with different corrosion degree w and (b) experimental results of SAW’s dispersion curves on teeth with different demineralization conditions.

Fig. 9.
Fig. 9.

Comparison between numerical simulation and experimental results.

Tables (2)

Tables Icon

Table 1. Thermodynamics Parameters of Enamel and Dentin in Human Tooth [34]

Tables Icon

Table 2. Optical Parameters of Enamel at Different Wavelengths of Nd:YAG Laser

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρiciTi(x,y,t)t=x(kiTi(x,y,t)x)+y(kiTi(x,y,t)y)+Q,
Q=β(1RT)I0eβyxx0e(x2/r02)tt0e(t2/t02),
(1νi)Ei(1+νi)(12νi)(·Ui)Ei2(1+νi)××UiαiEi12νiTi(x,y,t)=ρi2Ui2t,
E(y)={a·y+b,(4mmx6mm,0yHcaries);Eenamel,(others);
{a=(1ω)EenamelHcaries,b=ωEenamelHcaries=(1.251.25ω)Henamel(0.2ω1),
Ppeak=E2Δt·ΔS=r·E1Δt·l·w,
H(k,f)=++u(x,t)ei(kx+ωt)dxdt,
zλ=cR/f,

Metrics