Abstract

A spectrally resolved Raman lidar based on a tripled Nd:YAG laser is built for measuring gaseous and liquid water in the atmosphere. A double-grating polychromator with a reciprocal linear dispersion of 0.237nmmm1 is designed to achieve the wavelength separation and the suppression of elastic backscatter. A 32-channel linear-array photomultiplier tube is employed to sample atmospheric Raman water spectrum between 401.65 and 408.99 nm. The lidar-observed Raman water spectrum in the very clear atmosphere is nearly invariable in shape. It is dominated by water vapor, and can serve as background reference for Raman lidar identification of the phase state of atmospheric water under various weather conditions. The lidar has measured also the Raman water spectrum of an aerosol/liquid water layer. The spectrum showed a moderate increase of the signal on both sides of the Q-branch of water vapor. Noting that under clear weather conditions the Raman water spectrum intensity stays at a very low level in the 401.6–404.7 nm range, the Raman water signal in this portion can be used to estimate the liquid water content in the layer.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, “Raman lidar observations of cloud liquid water,” Appl. Opt. 43, 6440–6453 (2004).
    [CrossRef]
  2. G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004).
    [CrossRef]
  3. G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
    [CrossRef]
  4. U. Wandinger, “Raman lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 9.
  5. D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003).
    [CrossRef]
  6. C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
    [CrossRef]
  7. T. Leblanc, I. S. M. McDermid, and T. D. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5, 17–36 (2012).
    [CrossRef]
  8. D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
    [CrossRef]
  9. J. R. Scherer, M. K. Go, and S. Kint, “Raman spectra and structure of water from −10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
    [CrossRef]
  10. G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986).
    [CrossRef]
  11. G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
    [CrossRef]
  12. T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000).
    [CrossRef]
  13. C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
    [CrossRef]
  14. D. N. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
    [CrossRef]
  15. S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Li, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010).
    [CrossRef]
  16. D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
    [CrossRef]
  17. S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997).
    [CrossRef]
  18. I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000).
    [CrossRef]
  19. Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004).
    [CrossRef]
  20. O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983).
    [CrossRef]
  21. D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
    [CrossRef]
  22. D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
    [CrossRef]
  23. C. M. Yu and F. Yi, “Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements,” J. Atmos. Sol-Terr. Phys. 70, 1281–1288 (2008).
    [CrossRef]
  24. F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
    [CrossRef]
  25. W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002).
    [CrossRef]
  26. R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
    [CrossRef]
  27. T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).
  28. K. Sassen, “Polarization in lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 2.
  29. N. Sugimoto, Z. W. Huang, T. Nishizawa, I. Matsui, and B. Tatarov, “Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer,” Opt. Express 20, 20800–20807 (2012).
    [CrossRef]
  30. T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
    [CrossRef]

2013 (1)

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

2012 (2)

N. Sugimoto, Z. W. Huang, T. Nishizawa, I. Matsui, and B. Tatarov, “Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer,” Opt. Express 20, 20800–20807 (2012).
[CrossRef]

T. Leblanc, I. S. M. McDermid, and T. D. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5, 17–36 (2012).
[CrossRef]

2010 (2)

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Li, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010).
[CrossRef]

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

2009 (2)

D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
[CrossRef]

C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
[CrossRef]

2008 (1)

C. M. Yu and F. Yi, “Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements,” J. Atmos. Sol-Terr. Phys. 70, 1281–1288 (2008).
[CrossRef]

2007 (1)

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

2006 (2)

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

2004 (3)

Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004).
[CrossRef]

V. Rizi, M. Iarlori, G. Rocci, and G. Visconti, “Raman lidar observations of cloud liquid water,” Appl. Opt. 43, 6440–6453 (2004).
[CrossRef]

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (2)

T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000).
[CrossRef]

I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000).
[CrossRef]

1999 (3)

D. N. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef]

1997 (1)

1996 (1)

T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

1986 (2)

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986).
[CrossRef]

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

1983 (1)

O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983).
[CrossRef]

1974 (1)

J. R. Scherer, M. K. Go, and S. Kint, “Raman spectra and structure of water from −10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

1971 (1)

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Abedin, M. N.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Avila, G.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef]

Baik, S.

D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
[CrossRef]

Baik, S. H.

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

Bukin, O. A.

O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983).
[CrossRef]

Cadirola, M.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Cha, H.

D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
[CrossRef]

Cha, H. K.

I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000).
[CrossRef]

Chen, W. N.

Cheong, H. D.

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Li, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010).
[CrossRef]

Chiang, C. W.

C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
[CrossRef]

W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002).
[CrossRef]

Choi, W. S.

Churina, I. V.

T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000).
[CrossRef]

Comer, J.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Das, S. K.

C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
[CrossRef]

Demoz, B.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Demoz, B. B.

Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004).
[CrossRef]

Dolenko, T. A.

T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000).
[CrossRef]

Elsayed-Ali, H. E.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Evans, K.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997).
[CrossRef]

Fadeev, V. V.

T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000).
[CrossRef]

Fernandez, J. M.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef]

Ferrare, R.

Fisher, M. R.

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

Furushima, M.

T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Garcia, C. S.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Gentry, B.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Girolamo, P. D.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Glushkov, S. M.

T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000).
[CrossRef]

Go, M. K.

J. R. Scherer, M. K. Go, and S. Kint, “Raman spectra and structure of water from −10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

He, Y. J.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

Hokmabadi, M. S.

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986).
[CrossRef]

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

Hu, H. L.

C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
[CrossRef]

Hu, S. X.

C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
[CrossRef]

Huang, C. M.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

Huang, Z. W.

Iarlori, M.

Ismail, S.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Kai, K.

T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Kim, D.

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

S. H. Park, Y. G. Kim, D. Kim, H. D. Cheong, W. S. Choi, and J. I. Li, “Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water,” J. Opt. Soc. Korea 14, 209–214 (2010).
[CrossRef]

D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
[CrossRef]

Kim, D. H.

I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000).
[CrossRef]

Kim, Y.

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
[CrossRef]

Kim, Y. G.

Kint, S.

J. R. Scherer, M. K. Go, and S. Kint, “Raman spectra and structure of water from −10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

Kopvillem, U. K.

O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983).
[CrossRef]

Leblanc, T.

T. Leblanc, I. S. M. McDermid, and T. D. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5, 17–36 (2012).
[CrossRef]

Lee, J.

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

Lee, J. M.

I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000).
[CrossRef]

Li, J.

Li, J. I.

Mano, Y.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

Mate, B.

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef]

Matsui, I.

McDermid, I. S. M.

T. Leblanc, I. S. M. McDermid, and T. D. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5, 17–36 (2012).
[CrossRef]

Melfi, S. H.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

D. N. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997).
[CrossRef]

Mielke, B.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Misra, A. K.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Montero, S.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef]

Murayama, T.

T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Nagai, T.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

Nee, J. B.

C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
[CrossRef]

W. N. Chen, C. W. Chiang, and J. B. Nee, “Lidar ratio and depolarization ratio for cirrus clouds,” Appl. Opt. 41, 6470–6476 (2002).
[CrossRef]

Nishizawa, T.

Oda, A.

T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

Park, S. H.

Refaat, T. F.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Rizi, V.

Rocci, G.

Rush, K.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Russo, F.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

Sakai, T.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

Sandford, S. P.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Sassen, K.

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

K. Sassen, “Polarization in lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 2.

Scherer, J. R.

J. R. Scherer, M. K. Go, and S. Kint, “Raman spectra and structure of water from −10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

Schotland, R. M.

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Schwemmer, G.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, and G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997).
[CrossRef]

Sharma, S. K.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Singh, U. N.

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Song, I.

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
[CrossRef]

Stolyarchuk, S. Y.

O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983).
[CrossRef]

Stone, R.

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

Sugimoto, N.

Tatarov, B.

Tejeda, G.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef]

Turner, D. D.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

Tyapkin, V. A.

O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983).
[CrossRef]

van Hove, T.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Venable, D.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Veselovskii, I.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004).
[CrossRef]

Veselovskii, I. A.

I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000).
[CrossRef]

Visconti, G.

Walrafen, G. E.

D. N. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986).
[CrossRef]

Walsh, T. D.

T. Leblanc, I. S. M. McDermid, and T. D. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5, 17–36 (2012).
[CrossRef]

Wandinger, U.

U. Wandinger, “Raman lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 9.

Wang, Z.

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004).
[CrossRef]

Whiteman, D.

Whiteman, D. N.

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004).
[CrossRef]

D. N. Whiteman, “Examination of the traditional Raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42, 2593–2608 (2003).
[CrossRef]

D. N. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

Yang, W. H.

D. N. Whiteman, G. E. Walrafen, W. H. Yang, and S. H. Melfi, “Measurement of an isosbestic point in the Raman spectrum of liquid water by use of a backscattering geometry,” Appl. Opt. 38, 2614–2615 (1999).
[CrossRef]

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986).
[CrossRef]

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

Yi, F.

C. M. Yu and F. Yi, “Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements,” J. Atmos. Sol-Terr. Phys. 70, 1281–1288 (2008).
[CrossRef]

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

Yu, C. M.

C. M. Yu and F. Yi, “Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements,” J. Atmos. Sol-Terr. Phys. 70, 1281–1288 (2008).
[CrossRef]

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

Yue, X. C.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

Zhang, S. D.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

Zhou, J.

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

I. A. Veselovskii, H. K. Cha, D. H. Kim, and J. M. Lee, “Raman lidar for the study of liquid water and water vapor in the troposphere,” Appl. Phys. B 71, 113–117 (2000).
[CrossRef]

Atmos. Meas. Tech. (1)

T. Leblanc, I. S. M. McDermid, and T. D. Walsh, “Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring,” Atmos. Meas. Tech. 5, 17–36 (2012).
[CrossRef]

Geophys. Res. Lett. (1)

Z. Wang, D. N. Whiteman, B. B. Demoz, and I. Veselovskii, “A new way to measure cirrus cloud ice water content by using ice Raman scatter with Raman lidar,” Geophys. Res. Lett. 31, L15101 (2004).
[CrossRef]

J. Appl. Meteorol. (1)

R. M. Schotland, K. Sassen, and R. Stone, “Observations by lidar of linear depolarization ratios for hydrometeors,” J. Appl. Meteorol. 10, 1011–1017 (1971).
[CrossRef]

J. Appl. Spectrosc. (1)

O. A. Bukin, U. K. Kopvillem, S. Y. Stolyarchuk, and V. A. Tyapkin, “Investigation of Raman spectra of atmospheric gases,” J. Appl. Spectrosc. 38, 561–564 (1983).
[CrossRef]

J. Atmos. Oceanic Technol. (2)

D. N. Whiteman, B. Demoz, P. D. Girolamo, J. Comer, I. Veselovskii, K. Evans, Z. Wang, M. Cadirola, K. Rush, G. Schwemmer, B. Gentry, S. H. Melfi, B. Mielke, D. Venable, and T. van Hove, “Raman lidar measurements during the international H2O project. Part II: case studies,” J. Atmos. Oceanic Technol. 23, 170–183 (2006).
[CrossRef]

T. Sakai, D. N. Whiteman, F. Russo, D. D. Turner, I. Veselovskii, S. H. Melfi, T. Nagai, and Y. Mano, “Liquid water cloud measurements using the Raman lidar technique: current understanding and future research needs.” J. Atmos. Oceanic Technol. 30, 1337–1353 (2013).
[CrossRef]

J. Atmos. Sol-Terr. Phys. (2)

C. M. Yu and F. Yi, “Atmospheric temperature profiling by joint Raman, Rayleigh and Fe Boltzmann lidar measurements,” J. Atmos. Sol-Terr. Phys. 70, 1281–1288 (2008).
[CrossRef]

C. W. Chiang, S. K. Das, J. B. Nee, S. X. Hu, and H. L. Hu, “Simultaneous measurement of humidity and temperature in the lower troposphere over Chung-Li, Taiwan,” J. Atmos. Sol-Terr. Phys. 71, 1389–1396 (2009).
[CrossRef]

J. Chem. Phys. (2)

G. E. Walrafen, M. S. Hokmabadi, and W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85, 6964–6969 (1986).
[CrossRef]

G. E. Walrafen, M. R. Fisher, M. S. Hokmabadi, and W. H. Yang, “Temperature dependence of the low- and high-frequency Raman scattering from liquid water,” J. Chem. Phys. 85, 6970–6982 (1986).
[CrossRef]

J. Geophys. Res. (2)

F. Yi, S. D. Zhang, C. M. Yu, Y. J. He, X. C. Yue, C. M. Huang, and J. Zhou, “Simultaneous observations of sporadic Fe and Na layers by two closely colocated resonance fluorescence lidars at Wuhan (30.5°N, 114.4°E), China,” J. Geophys. Res. 112, D04303 (2007).
[CrossRef]

D. N. Whiteman and S. H. Melfi, “Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar,” J. Geophys. Res. 104, 31411–31419 (1999).
[CrossRef]

J. Korean Phys. Soc. (1)

D. Kim, S. Baik, H. Cha, Y. Kim, and I. Song, “Lidar measurement of a full Raman spectrum of water by using a multichannel detector,” J. Korean Phys. Soc. 54, 38–43 (2009).
[CrossRef]

J. Meteorol. Soc. Jpn. (1)

T. Murayama, M. Furushima, A. Oda, and K. Kai, “Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo,” J. Meteorol. Soc. Jpn. 74, 571–578 (1996).

J. Mol. Spectrosc. (2)

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Mol. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, J. M. Fernandez, B. Mate, G. Tejeda, and S. Montero, “Ro-vibrational Raman cross sections of water vapor in the OH stretching region,” J. Mol. Spectrosc. 196, 77–92 (1999).
[CrossRef]

J. Opt. Soc. Korea (1)

J. Phys. Chem. (1)

J. R. Scherer, M. K. Go, and S. Kint, “Raman spectra and structure of water from −10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974).
[CrossRef]

J. Raman Spectrosc. (1)

T. A. Dolenko, I. V. Churina, V. V. Fadeev, and S. M. Glushkov, “Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media,” J. Raman Spectrosc. 31, 863–870 (2000).
[CrossRef]

Opt. Express (1)

Opt. Rev. (1)

D. Kim, I. Song, H. D. Cheong, Y. Kim, S. H. Baik, and J. Lee, “Spectrum characteristics of multichannel water Raman lidar signals and principal component analysis,” Opt. Rev. 17, 84–89 (2010).
[CrossRef]

Proc. SPIE (1)

C. S. Garcia, M. N. Abedin, S. K. Sharma, A. K. Misra, S. Ismail, U. N. Singh, T. F. Refaat, H. E. Elsayed-Ali, and S. P. Sandford, “Remote pulsed laser Raman spectroscopy system for detecting water, ice, and hydrous minerals,” Proc. SPIE 6302, 630215 (2006).
[CrossRef]

Other (2)

U. Wandinger, “Raman lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 9.

K. Sassen, “Polarization in lidar,” in Lidar Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), Chap. 2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Optical layout of the spectrally resolved Raman lidar (SRRL) for atmospheric water measurement. L, lens; G, grating; RM, reflecting mirror; IF, interference filter; BP, bandpass filter; F, fiber; PMT, photomultiplier tube.

Fig. 2.
Fig. 2.

CCD-registered two Hg spectral lines at 404.66 and 407.78 nm after Hg lamp light is passed through the dual-grating polychromator (DGP) designed for the spectrally resolved Raman lidar. The peak-to-peak spacing between the two spectral lines is 13.1mm indicating that the DGP has a reciprocal linear dispersion of 0.237nmmm1.

Fig. 3.
Fig. 3.

Response of the system (the DGP plus the 32-channel PMT) to the quasi-monochromatic light input changing from 401 to 409 nm with a step value of 0.25 nm. Note that the 32 response curves (corresponding to the 32 different wavelengths) are separately plotted in four distinct panels for the convenience of identification. The label number above each curve corresponds to the channel sequence number of the 32-channel PMT.

Fig. 4.
Fig. 4.

(a) Comparison between the altitude profiles of the Raman water vapor signals (solid) from the 26th channel of the spectrally resolved Raman lidar (red) and from another co-located CRL (blue). The dashed curves stand for the Raman N2 387-nm signals respectively from the two lidars. All curves represent 30-min integration. The height resolution is 30 m for the spectrally resolved Raman lidar (SRRL) and 96 m for the CRL, (b) ratio of two Raman water vapor signals (blue), and (c) ratio of two Raman N2 signals (red). Note that the ratios are nearly altitude independent.

Fig. 5.
Fig. 5.

Altitude-resolved atmospheric Raman water spectrum signal measured with the spectrally resolved Raman lidar at Wuhan during 2100–2130 LT on 24 July 2012 when atmosphere was very clear (without both cloud and liquid water layer). Note that the prominent Raman water vapor signal peak at 407.57nm (the 26th channel) is visible in the altitude range from 0.5 to 8.0km.

Fig. 6.
Fig. 6.

Altitude-integrated Raman water spectrum signal (red) from 1.0 to 1.8 km during 2100–2130 LT on 24 July 2012. The spectral data have been normalized by the photon count value of the Q-branch Raman peak (407.57 nm). The vertical black bars stand for the measurement uncertainty for the normalized Raman spectral signals. For comparison, the theoretically calculated Raman water vapor spectrum is also plotted (blue). The theoretical spectrum is obtained by sampling the corresponding spectral lines over the spectrum region from 401 to 409 nm with a resolution of 0.24 nm. Note that the lidar-observed spectrum is fairly similar to the theoretical results as a whole.

Fig. 7.
Fig. 7.

Atmospheric Raman water spectra (red) from different 1-h integration periods on five separate nights when the atmosphere was very clear (without both cloud and liquid water layer). Each Raman spectrum is obtained by integrating the raw 1-h lidar measurement over the 1.0–1.8 km altitude range and then normalizing the integrated result by the photon counts from the Q-branch Raman peak (407.57nm). The nightly mean of the normalized spectra is denoted by blue curve (a)–(e) and (f) plots the nightly mean normalized spectra (red) and their average (blue).

Fig. 8.
Fig. 8.

Atmospheric Raman water spectra (red) for three different altitude ranges measured from nine different 1-h periods on the night of 19–20 LT July 2012. Each Raman spectrum in each panel is obtained by integrating the raw 1-h lidar measurement over the given altitude range and then normalizing the integrated result by the photon counts from the Q-branch Raman peak (407.57nm). The nightly mean of the normalized spectra for each altitude range is denoted by the blue curve.

Fig. 9.
Fig. 9.

Comparison of WVMR measurement results between the spectrally resolved Raman lidar (26th channel) and radiosonde. The radiosondes were launched from the Wuhan Weather Station, situated 23.4km northwest of the lidar site.

Fig. 10.
Fig. 10.

Time-altitude contour plots of lidar backscatter ratio R and depolarization ratio δ measured by a co-located conventional 532 nm polarization/Raman lidar at Wuhan during the period of 1–2 Jan. 2013. Note that a thin aerosol layer was visible at altitudes near 2.6km for more than 19 h (from 1700LT on 1 to 1200 LT on 2 Jan. 2013). The low depolarization ratio (δ<0.03) within the layer indicates that it is an aerosol/liquid water layer.

Fig. 11.
Fig. 11.

Altitude-integrated Raman water spectrum over the height range from 2.0 to 3.0 km as measured during 2000–2100 LT (red) on 1 Jan. and during 0600–0700 LT (blue) on 2 Jan. 2013. For comparison, a typical example of the atmospheric Raman water spectrum under very clear weather conditions is plotted (magenta). The spectra have been normalized respectively with the separate maximum photon count values at the Q-branch Raman peak position (407.57nm).

Fig. 12.
Fig. 12.

(a) Normalized Raman water signals from liquid water channel (10th) and water vapor channel (26th) as measured during 2000–2100 LT on 1 January 2013, (b) and (c) radiosonde relative humidity and temperature profiles from the Wuhan Weather Station (radiosonde released around 2000 LT), (d) and (e) backscatter ratio R and depolarization ratio δ profiles from the co-located conventional 532-nm polarization lidar (PL) during 2000–2100 LT on the same date.

Fig. 13.
Fig. 13.

Same as Fig. 12, but measured during 0600–0700 LT on 2 January 2013 (the radiosonde was released around 0800 LT from the Wuhan Weather Station).

Tables (1)

Tables Icon

Table 1. Main Parameters at the Peak of the Aerosol/Liquid Water Layer for Two Different Measurement Times

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λi=(i26)×0.237+407.57(nm),

Metrics