Abstract

A new type of catadioptric compensator is established. The tolerance values of lens spacing, lens thickness, and tilt in mounting are about three times higher than that of the Offner compensator. They overcome the localization of the Offner compensator, improve the test validity, and reduce the test risk of system detection by cross-validation with existing means. The performance of the catadioptric compensator is verified in experiments and theoretically.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zhang, C. Yang, and Q. Xu, “Precision analyses of a stitching interferometer testing system,” Appl. Opt. 45, 2399–2403 (2006).
    [CrossRef]
  2. W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40, 3326–3333 (2001).
    [CrossRef]
  3. A. Offner, “A null corrector for paraboloidal mirrors,” Appl. Opt. 2, 153–155 (1963).
    [CrossRef]
  4. D. Malacara, Optical Shop Testing (Wiley, 1978).
  5. J. R. Moya and J. E. A. Landgrave, “Third-order design of refractive Offner compensators,” Appl. Opt. 26, 2667–2672 (1987).
    [CrossRef]
  6. J. M. Sasian, “Optimum configuration of the Offner null corrector: testing an F/1 paraboloid,” Proc. SPIE 1164, 8–17 (1989).
    [CrossRef]
  7. J. H. Burge, W. Davison, C. Zhao, and H. M. Martin, “Development of surface metrology for the Giant Magellan Telescope primary mirror,” in Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, E. Atad-Ettedgui and D. Lemke, ed. (SPIE, 2008).
  8. Y. Zhang, “New family of 1∶1 catadioptric broadband deep-UV high-NA lithography lenses,” in Symposium on Microlithography (SPIE, 1991).
  9. Y. Zhang, “Excimer laser photolithography with a 1∶1 broadband catadioptric optics,” in Symposium on Microlithography (SPIE, 1991).
  10. Y. Zhang, “1∶1 catadioptric optical system,” Chinese patent, No. 89103586.9 (May23, 1989).

2006 (1)

2001 (1)

1989 (1)

J. M. Sasian, “Optimum configuration of the Offner null corrector: testing an F/1 paraboloid,” Proc. SPIE 1164, 8–17 (1989).
[CrossRef]

1987 (1)

1963 (1)

Burge, J. H.

J. H. Burge, W. Davison, C. Zhao, and H. M. Martin, “Development of surface metrology for the Giant Magellan Telescope primary mirror,” in Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, E. Atad-Ettedgui and D. Lemke, ed. (SPIE, 2008).

Davison, W.

J. H. Burge, W. Davison, C. Zhao, and H. M. Martin, “Development of surface metrology for the Giant Magellan Telescope primary mirror,” in Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, E. Atad-Ettedgui and D. Lemke, ed. (SPIE, 2008).

Landgrave, J. E. A.

Li, W.

Liu, Z.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, 1978).

Martin, H. M.

J. H. Burge, W. Davison, C. Zhao, and H. M. Martin, “Development of surface metrology for the Giant Magellan Telescope primary mirror,” in Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, E. Atad-Ettedgui and D. Lemke, ed. (SPIE, 2008).

Moya, J. R.

Offner, A.

Sasian, J. M.

J. M. Sasian, “Optimum configuration of the Offner null corrector: testing an F/1 paraboloid,” Proc. SPIE 1164, 8–17 (1989).
[CrossRef]

Su, X.

Xu, Q.

Yang, C.

Zhang, R.

Zhang, Y.

Y. Zhang, “New family of 1∶1 catadioptric broadband deep-UV high-NA lithography lenses,” in Symposium on Microlithography (SPIE, 1991).

Y. Zhang, “Excimer laser photolithography with a 1∶1 broadband catadioptric optics,” in Symposium on Microlithography (SPIE, 1991).

Y. Zhang, “1∶1 catadioptric optical system,” Chinese patent, No. 89103586.9 (May23, 1989).

Zhao, C.

J. H. Burge, W. Davison, C. Zhao, and H. M. Martin, “Development of surface metrology for the Giant Magellan Telescope primary mirror,” in Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, E. Atad-Ettedgui and D. Lemke, ed. (SPIE, 2008).

Appl. Opt. (4)

Proc. SPIE (1)

J. M. Sasian, “Optimum configuration of the Offner null corrector: testing an F/1 paraboloid,” Proc. SPIE 1164, 8–17 (1989).
[CrossRef]

Other (5)

J. H. Burge, W. Davison, C. Zhao, and H. M. Martin, “Development of surface metrology for the Giant Magellan Telescope primary mirror,” in Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, E. Atad-Ettedgui and D. Lemke, ed. (SPIE, 2008).

Y. Zhang, “New family of 1∶1 catadioptric broadband deep-UV high-NA lithography lenses,” in Symposium on Microlithography (SPIE, 1991).

Y. Zhang, “Excimer laser photolithography with a 1∶1 broadband catadioptric optics,” in Symposium on Microlithography (SPIE, 1991).

Y. Zhang, “1∶1 catadioptric optical system,” Chinese patent, No. 89103586.9 (May23, 1989).

D. Malacara, Optical Shop Testing (Wiley, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Improved Wynne–Dyson projection lens with semi-transparent reflective separation configuration.

Fig. 2.
Fig. 2.

Initial configuration of the catadioptric compensator. (1) Testing aspheric surface, (2) prism group, (3) plano–convex lens, (4) meniscus lens, (5) plane reflector, and (6) interferometer.

Fig. 3.
Fig. 3.

Catadioptric compensator with reflector. (1) Testing asphere, (2) reflector with a hole, (3) plano–convex lens, (4) meniscus lens, (5) plane reflector, and (6) interferometer.

Fig. 4.
Fig. 4.

Design result of the compensator with reflector.

Fig. 5.
Fig. 5.

Experiment using the catadioptric compensator.

Fig. 6.
Fig. 6.

Test result for the catadioptric compensator.

Fig. 7.
Fig. 7.

Test result for the Offner compensator.

Tables (2)

Tables Icon

Table 1. Compensator Parameters

Tables Icon

Table 2. Comparison of the Catadioptric Compensator and Offner Compensator Tolerances

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

Sprism=2(nprism21)Uprism4nprism3dprism.
S2=I1L1sinU1(sinU1sinU1)(sinU1+sinU1)cosU1cos12(U1U1)cos12(U1+U1)+nI2L2sinU2(sinI2sinI2)(sinI2sinU2)cos12(I2U2)cos12(I2+U2)cos12(I2+I2)=Uas2δSasS3,
δSas=12R0ε2[tan2Uas+34(ε21)tan4Uas+58(ε21)tan6Uas],
U1=arcsin(1nsinI1),
U2=U1,
L2=L1tanU1tanU1d1,2,
I2=arcsin(L2r2r2sin(U2)),
r2=|L1tanU1tanU1|+d1,2,
I2=arcsin(n×sin(I2)),
L2=r2+r2sinI2sinU2.
S3=I3L3sinU3(sinI3sinI3)(sinI3sinU3)cos12(I3U3)cos12(I3+U3)cos12(I3+I3)+nI4L4sinU4(sinI4sinI4)(sinI4sinU4)cos12(I4U4)cos12(I4+U4)cos12(I4+I4)Uas2δSas.
I3=arcsin(sin(I3)/n),
I3=arcsin(L3r3r3sin(U3)),
L3U3I3(I3I3)(I3U3)=Uas2δSas,
I3=L3r3r3U3,
I3=L3r3nr3U3,
U3=U2.
L3U3I3(I3I3)(I3U3)=L3U3I32(11n)(I3nU3)=Uas2δSas,
AI33+BI32+C=0,
A=L3U3n1n2,B=L3U32(11n),C=Ua2δSa.
I3=1327C+2A32+(27C+2A32)2A63+1327C+2A32(27C+2A32)2A63+A3,
r3=L3U3I3+U3,
U4=U3+I3I3,
L4=r3+r3sinI3sinU3d3,
I4=arcsin(L4r4r4sin(U4)),
I4=arcsin(n×sin(I4)),
r4=L4(n1)(nr3d3)n(n1)L4nr3.
d4=f1f2f1+f2(d2lh)d2d3,
lh=d3r3n(r4r3)+(n1)d3.

Metrics