Abstract

Field trial results of a 5 W all-fiber broadband supercontinuum (SC) laser covering the short-wave infrared (SWIR) wavelength bands from 1.55 to 2.35 μm are presented. The SC laser is kept on a 12 story tower at the Wright Patterson Air Force Base and propagated through the atmosphere to a target 1.6 km away. Beam quality of the SC laser after propagating through 1.6 km is studied using a SWIR camera and show a near diffraction limited beam with an M2 value of <1.3. The SC laser is used as the illumination source to perform spectral reflectance measurements of various samples at 1.6 km, and the results are seen to be in good agreement with in-lab measurements using a conventional lamp source. Spectral stability measurements are performed after atmospheric propagation through 1.6 km and show a relative variability of 4%8% across the spectrum depending on the atmospheric turbulence effects. Spectral stability measurements are also performed in-lab and show a relative variability of <0.6% across the spectrum.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
    [CrossRef]
  2. S. D. Jackson, “High-power fiber lasers for the shortwave infrared,” Proc. SPIE 7686, 768608 (2010).
    [CrossRef]
  3. M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
    [CrossRef]
  4. J. H. Taylor and H. W. Yates, “Atmospheric transmission in the infrared,” J. Opt. Soc. Am. 47, 223–225 (1957).
    [CrossRef]
  5. R. N. Lane, “The SWIR advantage,” Proc. SPIE, 2555, 246–254 (1995).
    [CrossRef]
  6. K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998).
    [CrossRef]
  7. J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001).
    [CrossRef]
  8. N. Haala and C. Brenner, “Extraction of buildings and trees in urban environments,” ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999).
    [CrossRef]
  9. S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral LIDAR: measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Geosci. Remote Sens. Lett. S4, 211–215 (2007).
    [CrossRef]
  10. G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection,” in proceedings of the 4th EMRS DTC Technical Conference, Edinburgh (2007).
  11. M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).
  12. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
    [CrossRef]
  13. Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
    [CrossRef]
  14. R. Ceolato, N. Riviere, and L. Hespel, “Reflectances from a supercontinuum laser-based instrument: hyperspectral, polarimetric, and angular measurements,” Opt. Express 20, 29413–29425 (2012).
    [CrossRef]
  15. C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
    [CrossRef]
  16. G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).
  17. C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
    [CrossRef]
  18. J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
    [CrossRef]
  19. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
    [CrossRef]
  20. A. Tunick, N. Tikhonov, M. Vorontsov, and G. Carhart, “Characterization of optical turbulence (cn2) data measured at the ARL A_LOT facility,” ARL-MR-625 (2005).
  21. J. Davis, “Consideration of atmospheric turbulence in laser systems design,” Appl. Opt. 5, 139–148 (1966).
    [CrossRef]
  22. M. C. Roggemann and D. J. Lee, “Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere,” Appl. Opt. 37, 4577–4585 (1998).
    [CrossRef]
  23. X.-C. Tan, Z.-C. Wu, and Z. Liang, “Effect of adaptive optical system on the capability of LIDAR detection in atmosphere,” Proc. SPIE 7284, 72840G (2009).
    [CrossRef]
  24. D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
    [CrossRef]
  25. B. Shiner, retrieved http://www.photonics.com/Article.aspx?AID=25158 .
  26. X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
    [CrossRef]
  27. “Introduction to solar radiation,” retrieved http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx .
  28. N. S. Kopeika, A System Engineering Approach to Imaging, Technology & Engineering (SPIE, 1998).
  29. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in their wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
    [CrossRef]
  30. V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
    [CrossRef]

2013 (2)

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
[CrossRef]

2012 (4)

2011 (1)

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

2010 (2)

S. D. Jackson, “High-power fiber lasers for the shortwave infrared,” Proc. SPIE 7686, 768608 (2010).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

2009 (2)

X.-C. Tan, Z.-C. Wu, and Z. Liang, “Effect of adaptive optical system on the capability of LIDAR detection in atmosphere,” Proc. SPIE 7284, 72840G (2009).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

2008 (2)

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[CrossRef]

2007 (2)

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral LIDAR: measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Geosci. Remote Sens. Lett. S4, 211–215 (2007).
[CrossRef]

D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
[CrossRef]

2003 (2)

G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

2001 (1)

J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001).
[CrossRef]

1999 (1)

N. Haala and C. Brenner, “Extraction of buildings and trees in urban environments,” ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999).
[CrossRef]

1998 (2)

K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998).
[CrossRef]

M. C. Roggemann and D. J. Lee, “Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere,” Appl. Opt. 37, 4577–4585 (1998).
[CrossRef]

1995 (1)

R. N. Lane, “The SWIR advantage,” Proc. SPIE, 2555, 246–254 (1995).
[CrossRef]

1977 (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in their wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

1966 (1)

1957 (1)

Absi, A.

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
[CrossRef]

Alexander, V. V.

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
[CrossRef]

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Bishop, G.

G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection,” in proceedings of the 4th EMRS DTC Technical Conference, Edinburgh (2007).

Boer, G. J.

Brenner, C.

N. Haala and C. Brenner, “Extraction of buildings and trees in urban environments,” ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999).
[CrossRef]

Burke, H.-H. K.

G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

Carhart, G.

A. Tunick, N. Tikhonov, M. Vorontsov, and G. Carhart, “Characterization of optical turbulence (cn2) data measured at the ARL A_LOT facility,” ARL-MR-625 (2005).

Cauwenberghs, G.

D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
[CrossRef]

Ceolato, R.

Chan, A.

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[CrossRef]

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Chen, R.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

Chen, Y.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

Davis, J.

Dunn, M. H.

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

Dyer, C. D.

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

Farr, L.

G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection,” in proceedings of the 4th EMRS DTC Technical Conference, Edinburgh (2007).

Fred, J.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Freeman, M. J.

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
[CrossRef]

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Haala, N.

N. Haala and C. Brenner, “Extraction of buildings and trees in urban environments,” ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999).
[CrossRef]

Hakala, T.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

Hansen, M. P.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[CrossRef]

Hespel, L.

Howle, C. R.

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

Hu, X.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Hyyppä, J.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral LIDAR: measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Geosci. Remote Sens. Lett. S4, 211–215 (2007).
[CrossRef]

J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001).
[CrossRef]

Ifarraguerri, A.

Ifarraguerri, A. I.

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

Inkinen, M.

J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001).
[CrossRef]

Islam, M. N.

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
[CrossRef]

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[CrossRef]

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Izawa, T.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in their wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “High-power fiber lasers for the shortwave infrared,” Proc. SPIE 7686, 768608 (2010).
[CrossRef]

Joseph, R. M.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Kaasalainen, S.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral LIDAR: measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Geosci. Remote Sens. Lett. S4, 211–215 (2007).
[CrossRef]

Ke, K.

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
[CrossRef]

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Kelle, O.

J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001).
[CrossRef]

Kerekes, J. P.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Kopeika, N. S.

N. S. Kopeika, A System Engineering Approach to Imaging, Technology & Engineering (SPIE, 1998).

Kraus, K.

K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998).
[CrossRef]

Kulkarni, O. P.

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Kumar, M.

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[CrossRef]

Lane, R. N.

R. N. Lane, “The SWIR advantage,” Proc. SPIE, 2555, 246–254 (1995).
[CrossRef]

Lee, D. J.

Lehikoinen, M.

J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001).
[CrossRef]

Leonard, J.

Leonard, J. D.

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

Li, C.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Li, X.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Liang, Z.

X.-C. Tan, Z.-C. Wu, and Z. Liang, “Effect of adaptive optical system on the capability of LIDAR detection in atmosphere,” Proc. SPIE 7284, 72840G (2009).
[CrossRef]

Libby, J. C.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Lindroos, T.

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral LIDAR: measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Geosci. Remote Sens. Lett. S4, 211–215 (2007).
[CrossRef]

Liu, L.

D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
[CrossRef]

Loizos, D. N.

D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
[CrossRef]

Malchow, D. S.

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[CrossRef]

Manzur, T.

Mauricio, J.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Meola, J.

V. V. Alexander, Z. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, A. S. Szalkowski, and G. J. Boer, “Power scalable >25 W supercontinuum laser from 2–2.5 micron with near diffraction limited beam and low output variability,” Opt. Lett. 38, 2292–2294 (2013).
[CrossRef]

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

Neelakandan, M.

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[CrossRef]

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Nischan, M. L.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Pfeifer, N.

K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998).
[CrossRef]

Rae, C. F.

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

Räikkönen, E.

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

Riviere, N.

Roggemann, M. C.

Ross, M.

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

Shaw, G. A.

G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

Shen, D.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Shi, Z.

Shibata, N.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in their wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Sotiriadis, P. P.

D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
[CrossRef]

Stothard, D. J. M.

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

Suomalainen, J.

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral lidar for terrestrial laser scanning,” Opt. Express 20, 7119–7127 (2012).
[CrossRef]

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

Szalkowski, A. S.

Takeda, A.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in their wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

Tan, X.-C.

X.-C. Tan, Z.-C. Wu, and Z. Liang, “Effect of adaptive optical system on the capability of LIDAR detection in atmosphere,” Proc. SPIE 7284, 72840G (2009).
[CrossRef]

Taylor, J. H.

Terry, F. L.

M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51, 2794–2807 (2012).
[CrossRef]

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Terry, L.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Tikhonov, N.

A. Tunick, N. Tikhonov, M. Vorontsov, and G. Carhart, “Characterization of optical turbulence (cn2) data measured at the ARL A_LOT facility,” ARL-MR-625 (2005).

Truscott, B. S.

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

Tunick, A.

A. Tunick, N. Tikhonov, M. Vorontsov, and G. Carhart, “Characterization of optical turbulence (cn2) data measured at the ARL A_LOT facility,” ARL-MR-625 (2005).

Veiga, I. V.

G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection,” in proceedings of the 4th EMRS DTC Technical Conference, Edinburgh (2007).

Vorontsov, M.

A. Tunick, N. Tikhonov, M. Vorontsov, and G. Carhart, “Characterization of optical turbulence (cn2) data measured at the ARL A_LOT facility,” ARL-MR-625 (2005).

Vorontsov, M. A.

D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
[CrossRef]

Wang, H.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Wang, Y.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Watson, M.

G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection,” in proceedings of the 4th EMRS DTC Technical Conference, Edinburgh (2007).

Welsh, M. J.

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Wu, Z.-C.

X.-C. Tan, Z.-C. Wu, and Z. Liang, “Effect of adaptive optical system on the capability of LIDAR detection in atmosphere,” Proc. SPIE 7284, 72840G (2009).
[CrossRef]

Xia, C.

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Xu, Z.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Yang, Z.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Yates, H. W.

Zadnik, J.

Zadnik, J. A.

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

Zakel, A.

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

Zhang, W.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Zhao, W.

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in their wavelength region,” Appl. Phys. Lett. 31, 33–35 (1977).
[CrossRef]

IEEE Geosci. Remote Sens. Lett. (1)

S. Kaasalainen, T. Lindroos, and J. Hyyppä, “Toward hyperspectral LIDAR: measurement of spectral backscatter intensity with a supercontinuum laser source,” IEEE Geosci. Remote Sens. Lett. S4, 211–215 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xia, Z. Xu, M. N. Islam, J. Fred, L. Terry, M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 w time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens. 39, 969–975 (2001).
[CrossRef]

ISPRS J. Photogramm. Remote Sens. (2)

N. Haala and C. Brenner, “Extraction of buildings and trees in urban environments,” ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999).
[CrossRef]

K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas with airborne laser scanner data,” ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998).
[CrossRef]

J. Opt. Soc. Am. (1)

Lincoln Lab. J. (2)

G. A. Shaw and H.-H. K. Burke, “Spectral imaging for remote sensing,” Lincoln Lab. J. 14, 3–28 (2003).

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Opt. Express (2)

Opt. Fiber Technol. (1)

V. V. Alexander, O. P. Kulkarni, M. Kumar, C. Xia, M. N. Islam, F. L. Terry, M. J. Welsh, K. Ke, M. J. Freeman, M. Neelakandan, and A. Chan, “Modulation instability initiated high power all-fiber supercontinuum lasers and their applications,” Opt. Fiber Technol. 18, 349–374 (2012).
[CrossRef]

Opt. Lett (1)

X. Hu, W. Zhang, Z. Yang, Y. Wang, W. Zhao, X. Li, H. Wang, C. Li, and D. Shen, “High average power, strictly all-fiber supercontinuum source with good beam quality,” Opt. Lett 36, 2659–2662 (2011).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (7)

J. Meola, A. Absi, J. D. Leonard, A. I. Ifarraguerri, M. N. Islam, V. V. Alexander, and J. A. Zadnik, “Modeling, development, and testing of a shortwave infrared supercontinuum laser source for use in active hyperspectral imaging,” Proc. SPIE 8743, 87431D (2013).
[CrossRef]

X.-C. Tan, Z.-C. Wu, and Z. Liang, “Effect of adaptive optical system on the capability of LIDAR detection in atmosphere,” Proc. SPIE 7284, 72840G (2009).
[CrossRef]

D. N. Loizos, L. Liu, P. P. Sotiriadis, G. Cauwenberghs, and M. A. Vorontsov, “Integrated multi-dithering controller for adaptive optics,” Proc. SPIE 6708, 67080B (2007).
[CrossRef]

S. D. Jackson, “High-power fiber lasers for the shortwave infrared,” Proc. SPIE 7686, 768608 (2010).
[CrossRef]

M. P. Hansen and D. S. Malchow, “Overview of SWIR detectors, cameras, and applications,” Proc. SPIE 6939, 69390I (2008).
[CrossRef]

C. R. Howle, D. J. M. Stothard, C. F. Rae, M. Ross, B. S. Truscott, C. D. Dyer, and M. H. Dunn, “Active hyperspectral imaging system for the detection of liquids,” in Proc. SPIE 6954, 69540l (2008).
[CrossRef]

R. N. Lane, “The SWIR advantage,” Proc. SPIE, 2555, 246–254 (1995).
[CrossRef]

Sensors (1)

Y. Chen, E. Räikkönen, S. Kaasalainen, J. Suomalainen, T. Hakala, J. Hyyppä, and R. Chen, “Two-channel hyperspectral LIDAR with a supercontinuum laser source,” Sensors 10, 7057–7066 (2010).
[CrossRef]

Other (5)

A. Tunick, N. Tikhonov, M. Vorontsov, and G. Carhart, “Characterization of optical turbulence (cn2) data measured at the ARL A_LOT facility,” ARL-MR-625 (2005).

B. Shiner, retrieved http://www.photonics.com/Article.aspx?AID=25158 .

“Introduction to solar radiation,” retrieved http://www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx .

N. S. Kopeika, A System Engineering Approach to Imaging, Technology & Engineering (SPIE, 1998).

G. Bishop, I. V. Veiga, M. Watson, and L. Farr, “Active spectral imaging for target detection,” in proceedings of the 4th EMRS DTC Technical Conference, Edinburgh (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a) Diagram of tower-target test layout. (b) Map view of 1.6 km tower to ground path at WPAFB.

Fig. 2.
Fig. 2.

(a) SC laser optical layout in the tower at the WPAFB. (b) SC laser in the tower at WPAFB.

Fig. 3.
Fig. 3.

(a) Overhead view of the beam quality measurement setup showing the position of the SWIR camera with respect to the target on the field. (b) Image of the SWIR camera.

Fig. 4.
Fig. 4.

(a) Overhead view of the field spectroscopy setup showing the position of the spectroradiometer SR1 with respect to the target on the field. (b) Image of SR1 used for the diffuse reflectance measurements.

Fig. 5.
Fig. 5.

(a) Overhead view of the spectral stability measurement setup showing the position of the spectroradiometer SR2 with respect to the target on the field. (b) Image of SR2 used for the spectral stability measurements.

Fig. 6.
Fig. 6.

(a) Optical layout of the all-fiber integrated 5 W SWIR SC laser. (b) Packaged 5 W SC laser prototype. (c) Collimation setup for the SC final output.

Fig. 7.
Fig. 7.

(a) SC output spectrum spanning from 1.55 to 2.35 μm with an average power of 5W across the continuum. The circles around each curve point to the corresponding Y axis. (b) SC output power scaling with 940 nm pump power in the power amplifier.

Fig. 8.
Fig. 8.

(a) Long-term power stability measurements of the 5 W SC prototype before the collimating mirror. (b) Zoomed-in view of the stability measurements.

Fig. 9.
Fig. 9.

SC laser (EYFA system) beam profile measurements at 1.6km, 1000 frame average. (a) Camera image of the beam and (b) Gaussian fit and beam width measurement.

Fig. 10.
Fig. 10.

Spectral reflectance measurements at 1.6km using the SC laser (solid lines) and their comparison to in-lab measurements performed using a quartz-halogen lamp (dashed lines). (a) Retrieved reflectance of white cloth, Tyvek, and wallboard. (b) Retrieved reflectance of plywood, gray silt cloth, and blue tarp.

Fig. 11.
Fig. 11.

Reflectance spectra for blue tarp, plywood, and gray silt cloth corrected with constant offset factors in each of the SWIR wavelength bands. The SC measurements overlap fairly well with the reference measurements after the applications of constant offset factors in each on the SWIR wavelength bands.

Fig. 12.
Fig. 12.

(a) Sample measurement sequence of radiance spectra at 1.6 km range. (b) Relative scan-to-scan variability for seven field measurements.

Fig. 13.
Fig. 13.

(a) Single frame image of the SC laser beam at 1.6km showing effects of atmospheric turbulence. (b) 1000 frame average of the same beam with background subtraction showing a much smoother beam profile.

Tables (2)

Tables Icon

Table 1. 5 W SWIR Amplitude Fluctuations at Different Wavelengths Measured In-Lab

Tables Icon

Table 2. Approximate Values for the SC Power Required to Match the Solar Irradiance at 1.6 and 3.05Km

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Cn2(R,θ)=Cn02r0r1(rsin(θ))4/3drr0=h0sin(θ),r1=h0sin(θ)+R,
Cn2(R,θ)=3Cn02(sin(θ))4/3[(h0sin(θ))1/3(h0sin(θ)+R)1/3]Cn2(3.05km,90°)Cn2(1.6km,2.72°)0.06.

Metrics