Abstract

A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Hudson, R. J. Williams, M. J. Withford, S. D. Jackson, W. Guan, and J. R. Marciante, “Single-frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38, 2388–2390 (2013).
    [CrossRef]
  2. G. K. Samanta, S. C. Kumar, and M. Ebrahim-Zadeh, “Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm,” Opt. Lett. 34, 1561–1563 (2009).
    [CrossRef]
  3. A. Polynkin, P. Polynkin, M. Mansuripur, and N. Peyghambarian, “Single-frequency fiber ring laser with 1  W output power at 1.5  μm,” Opt. Express 13, 3179–3184 (2005).
    [CrossRef]
  4. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17, 13711–13726 (2009).
    [CrossRef]
  5. C. Ye, J. J. Montiel i Ponsoda, A. Tervonen, and S. Honkanen, “Refractive index change in ytterbium-doped fibers induced by photodarkening and thermal bleaching,” Appl. Opt. 49, 5799–5805 (2010).
    [CrossRef]
  6. V. A. Aseev, A. S. Zlatov, N. V. Nikonorov, A. K. Przhevuskiĭ, and Y. K. Fedorov, “Gain spectra in ytterbium-erbium metaphosphate glasses for microlasers,” J. Opt. Technol. 75, 203–205 (2008).
    [CrossRef]
  7. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
    [CrossRef]
  8. C. Lv, Z. Wang, B. Yun, and Y. Cui, “Stable single frequency Er-doped all-fiber ring laser with fiber Bragg grating Fabry-Perot filter,” Chin. Opt. Lett. 3, 212–214 (2005).
  9. E. S. Fry and S. W. Henderson, “Suppression of spatial hole burning in polarization coupled resonators,” Appl. Opt. 25, 3017–3018 (1986).
    [CrossRef]
  10. S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38, 501–503 (2013).
    [CrossRef]
  11. K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37, 605–607 (2012).
    [CrossRef]
  12. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  13. R. Paschotta, H. R. Telle, and U. Keller, “Noise of solid state lasers,” in Solid-State Lasers and Applications (CRC Press, 2007), Chap. 12, pp. 473–510.
  14. S. A. Havstad, B. Fischer, A. E. Willner, and M. G. Wickham, “Loop-mirror filters based on saturable-gain or-absorber gratings,” Opt. Lett. 24, 1466–1468 (1999).
    [CrossRef]
  15. M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, “Linewidth narrowing mechanism in lasers by nonlinear wave mixing,” Opt. Lett. 19, 1406–1408 (1994).
    [CrossRef]
  16. S. Lin and T. G. Giallorenzi, “Sensitivity analysis of the Sagnac-effect optical-fiber ring interferometer,” Appl. Opt. 18, 915–931 (1979).
    [CrossRef]
  17. C. Vázquez, S. E. Vargas, and J. M. S. Pena, “Sagnac loop in ring resonators for tunable optical filters,” J. Lightwave Technol. 23, 2555–2567 (2005).
    [CrossRef]
  18. Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20, 875–877 (1995).
    [CrossRef]
  19. V. de Haan, R. Santbergen, M. Tijssen, and M. Zeman, “Standing waves in fiber-optic interferometers,” Appl. Opt. 50, 5674–5687 (2011).
    [CrossRef]
  20. J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15, 431–433 (1990).
    [CrossRef]
  21. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express 14, 9284–9292 (2006).
    [CrossRef]

2013 (2)

2012 (1)

2011 (1)

2010 (1)

2009 (2)

2008 (1)

2006 (1)

2005 (3)

1999 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

1995 (1)

1994 (1)

1990 (1)

1986 (1)

1979 (1)

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Abedin, K. S.

Aseev, V. A.

Cheng, Y.

Cui, Y.

Daisy, R.

de Haan, V.

Ebrahim-Zadeh, M.

Fedorov, Y. K.

Feng, Z.

Fischer, B.

Fry, E. S.

Giallorenzi, T. G.

Guan, W.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Havstad, S. A.

Henderson, S. W.

Honkanen, S.

Horowitz, M.

Hudson, D. D.

Jackson, S. D.

Jacobsson, B.

Keller, U.

R. Paschotta, H. R. Telle, and U. Keller, “Noise of solid state lasers,” in Solid-State Lasers and Applications (CRC Press, 2007), Chap. 12, pp. 473–510.

Kremp, T.

Kringlebotn, J. T.

Kumar, S. C.

Laming, R. I.

Laurell, F.

Li, C.

Lin, S.

Liu, X.

Loh, W. H.

Lv, C.

Mansuripur, M.

Marciante, J. R.

Mo, S.

Montiel i Ponsoda, J. J.

Nicholson, J. W.

Nikonorov, N. V.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

R. Paschotta, H. R. Telle, and U. Keller, “Noise of solid state lasers,” in Solid-State Lasers and Applications (CRC Press, 2007), Chap. 12, pp. 473–510.

Pasiskevicius, V.

Payne, D. N.

Pena, J. M. S.

Peng, M.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Porque, J.

Przhevuskii, A. K.

Qian, Q.

Samanta, G. K.

Santbergen, R.

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Shen, S.

Telle, H. R.

R. Paschotta, H. R. Telle, and U. Keller, “Noise of solid state lasers,” in Solid-State Lasers and Applications (CRC Press, 2007), Chap. 12, pp. 473–510.

Tervonen, A.

Tijssen, M.

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

Vargas, S. E.

Vázquez, C.

Wang, Z.

Wei, X.

Westbrook, P. S.

Wickham, M. G.

Williams, R. J.

Willner, A. E.

Withford, M. J.

Xu, S.

Yang, C.

Yang, Z.

Ye, C.

Yun, B.

Zayhowski, J. J.

Zeman, M.

Zhang, Q.

Zhang, W.

Zlatov, A. S.

Zyskind, J. L.

Appl. Opt. (4)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33, 1049–1056 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Technol. (1)

Opt. Express (3)

Opt. Lett. (8)

J. J. Zayhowski, “Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities,” Opt. Lett. 15, 431–433 (1990).
[CrossRef]

D. D. Hudson, R. J. Williams, M. J. Withford, S. D. Jackson, W. Guan, and J. R. Marciante, “Single-frequency fiber laser operating at 2.9 μm,” Opt. Lett. 38, 2388–2390 (2013).
[CrossRef]

G. K. Samanta, S. C. Kumar, and M. Ebrahim-Zadeh, “Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm,” Opt. Lett. 34, 1561–1563 (2009).
[CrossRef]

Y. Cheng, J. T. Kringlebotn, W. H. Loh, R. I. Laming, and D. N. Payne, “Stable single-frequency traveling-wave fiber loop laser with integral saturable-absorber-based tracking narrow-band filter,” Opt. Lett. 20, 875–877 (1995).
[CrossRef]

S. A. Havstad, B. Fischer, A. E. Willner, and M. G. Wickham, “Loop-mirror filters based on saturable-gain or-absorber gratings,” Opt. Lett. 24, 1466–1468 (1999).
[CrossRef]

M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, “Linewidth narrowing mechanism in lasers by nonlinear wave mixing,” Opt. Lett. 19, 1406–1408 (1994).
[CrossRef]

S. Xu, C. Li, W. Zhang, S. Mo, C. Yang, X. Wei, Z. Feng, Q. Qian, S. Shen, M. Peng, Q. Zhang, and Z. Yang, “Low noise single-frequency single-polarization ytterbium-doped phosphate fiber laser at 1083 nm,” Opt. Lett. 38, 501–503 (2013).
[CrossRef]

K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37, 605–607 (2012).
[CrossRef]

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Other (1)

R. Paschotta, H. R. Telle, and U. Keller, “Noise of solid state lasers,” in Solid-State Lasers and Applications (CRC Press, 2007), Chap. 12, pp. 473–510.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup of the SF ytterbium fiber laser.

Fig. 2.
Fig. 2.

Output power of multi-longitudinal-mode laser with the pump power for three FBGs of different reflectivities.

Fig. 3.
Fig. 3.

Comparative longitudinal mode characteristics of the multimodes and single-mode operation by the scanning F-P interferometer. (a) Multi-longitudinal modes oscillating without PC. (b) Multi-longitudinal modes oscillating with adjusting PC1. (c) Single longitudinal mode oscillating with two PCs.

Fig. 4.
Fig. 4.

Spectrum of the SF ytterbium-doped fiber laser.

Fig. 5.
Fig. 5.

Function curves of output power versus the pump power on multimodes and SF operation.

Fig. 6.
Fig. 6.

Spectrum and power stability of the SF fiber laser.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δvlaser=hvθItotToc4πTrt2Pout

Metrics