Abstract

By using the optical frequency dependence of surface-plasmon polaritons, color images can be reconstructed from holograms illuminated with white light. We report details on the color selectivity of the color holograms. The selectivity is tuned by the thickness of a dielectric film covering a plasmonic metal film. When the dielectric is SiO2 and the metal is silver, the appropriate thicknesses are 25 and 55 nm, respectively. In terms of spatial color uniformity, holograms made of silver-film corrugations are better than holograms recorded on photographic film on a flat silver surface.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characteristics of surface plasmon–polariton waves excited on 2D periodically patterned columnar thin films of silver

Jhuma Dutta, S. Anantha Ramakrishna, and Akhlesh Lakhtakia
J. Opt. Soc. Am. A 33(9) 1697-1704 (2016)

Evanescent-wave holography by use of surface-plasmon resonance

Shoji Maruo, Osamu Nakamura, and Satoshi Kawata
Appl. Opt. 36(11) 2343-2346 (1997)

Surface-profile dependence of photon–plasmon-polariton coupling at a corrugated silver surface

Andrew C. R. Pipino and George C. Schatz
J. Opt. Soc. Am. B 11(10) 2036-2045 (1994)

References

  • View by:
  • |
  • |
  • |

  1. C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
    [Crossref]
  2. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [Crossref]
  3. T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
    [Crossref]
  4. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
    [Crossref]
  5. S. Kawata and Y. Inouye, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
    [Crossref]
  6. N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
    [Crossref]
  7. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [Crossref]
  8. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
    [Crossref]
  9. S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008).
    [Crossref]
  10. M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white light illumination,” Science 332, 218–220 (2011).
    [Crossref]
  11. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  12. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  13. K. Holst and H. Raether, “The influence of thin surface films on the plasma resonance emission,” Opt. Commun. 2, 312–316 (1970).
    [Crossref]
  14. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
    [Crossref]
  15. G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally-focused images and ‘in-line’ background,” Phys. Lett. 23, 325–327 (1966).
    [Crossref]
  16. S. Maruo, O. Nakamura, and S. Kawata, “Evanescent-wave holography by use of surface-plasmon resonance,” Appl. Opt. 36, 2343–2346 (1997).
    [Crossref]
  17. I. Pockrand, “Reflection of light from periodically corrugated silver films near the plasma frequency,” Phys. Lett. 49A, 259–260 (1974).
  18. I. Pockrand and H. Raether, “Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
    [Crossref]
  19. M. Ozaki, J. Kato, and S. Kawata, “Blur suppression in holographic imaging with use of surface plasmons,” Appl. Phys. Lett. 101, 241117 (2012).
    [Crossref]
  20. L. H. Lin, “Edge-illuminated hologram,” J. Opt. Soc. Am. 60, 714A (1970).
    [Crossref]
  21. S. A. Benton, S. M. Birner, and A. Shirakura, “Edge-lit rainbow holograms,” Proc. SPIE 1212, 149–157 (1990).
    [Crossref]
  22. J. Upatnieks, “Edge-illuminated holograms,” Appl. Opt. 31, 1048–1052 (1992).
    [Crossref]

2012 (1)

M. Ozaki, J. Kato, and S. Kawata, “Blur suppression in holographic imaging with use of surface plasmons,” Appl. Phys. Lett. 101, 241117 (2012).
[Crossref]

2011 (1)

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white light illumination,” Science 332, 218–220 (2011).
[Crossref]

2008 (3)

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008).
[Crossref]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

2005 (1)

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[Crossref]

2004 (1)

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[Crossref]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

2000 (1)

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[Crossref]

1997 (1)

1994 (1)

1992 (1)

1990 (1)

S. A. Benton, S. M. Birner, and A. Shirakura, “Edge-lit rainbow holograms,” Proc. SPIE 1212, 149–157 (1990).
[Crossref]

1982 (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[Crossref]

1976 (1)

I. Pockrand and H. Raether, “Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[Crossref]

1974 (1)

I. Pockrand, “Reflection of light from periodically corrugated silver films near the plasma frequency,” Phys. Lett. 49A, 259–260 (1974).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1970 (2)

K. Holst and H. Raether, “The influence of thin surface films on the plasma resonance emission,” Opt. Commun. 2, 312–316 (1970).
[Crossref]

L. H. Lin, “Edge-illuminated hologram,” J. Opt. Soc. Am. 60, 714A (1970).
[Crossref]

1966 (1)

G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally-focused images and ‘in-line’ background,” Phys. Lett. 23, 325–327 (1966).
[Crossref]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Benton, S. A.

S. A. Benton, S. M. Birner, and A. Shirakura, “Edge-lit rainbow holograms,” Proc. SPIE 1212, 149–157 (1990).
[Crossref]

Birner, S. M.

S. A. Benton, S. M. Birner, and A. Shirakura, “Edge-lit rainbow holograms,” Proc. SPIE 1212, 149–157 (1990).
[Crossref]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Drezek, R.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[Crossref]

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

H’Dhili, F.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[Crossref]

Halas, N.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[Crossref]

Hayazawa, N.

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[Crossref]

Holst, K.

K. Holst and H. Raether, “The influence of thin surface films on the plasma resonance emission,” Opt. Commun. 2, 312–316 (1970).
[Crossref]

Inouye, Y.

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[Crossref]

S. Kawata and Y. Inouye, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kato, J.

M. Ozaki, J. Kato, and S. Kawata, “Blur suppression in holographic imaging with use of surface plasmons,” Appl. Phys. Lett. 101, 241117 (2012).
[Crossref]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white light illumination,” Science 332, 218–220 (2011).
[Crossref]

Kawata, S.

M. Ozaki, J. Kato, and S. Kawata, “Blur suppression in holographic imaging with use of surface plasmons,” Appl. Phys. Lett. 101, 241117 (2012).
[Crossref]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white light illumination,” Science 332, 218–220 (2011).
[Crossref]

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008).
[Crossref]

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[Crossref]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Evanescent-wave holography by use of surface-plasmon resonance,” Appl. Opt. 36, 2343–2346 (1997).
[Crossref]

S. Kawata and Y. Inouye, “Near-field scanning optical microscope with a metallic probe tip,” Opt. Lett. 19, 159–161 (1994).
[Crossref]

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Liedberg, B.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Lin, L. H.

L. H. Lin, “Edge-illuminated hologram,” J. Opt. Soc. Am. 60, 714A (1970).
[Crossref]

Lind, T.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Loo, C.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[Crossref]

Lowery, A.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[Crossref]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Maruo, S.

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Nakamura, O.

Nylander, C.

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Okamoto, T.

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[Crossref]

Ono, A.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008).
[Crossref]

Ozaki, M.

M. Ozaki, J. Kato, and S. Kawata, “Blur suppression in holographic imaging with use of surface plasmons,” Appl. Phys. Lett. 101, 241117 (2012).
[Crossref]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white light illumination,” Science 332, 218–220 (2011).
[Crossref]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[Crossref]

I. Pockrand and H. Raether, “Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[Crossref]

I. Pockrand, “Reflection of light from periodically corrugated silver films near the plasma frequency,” Phys. Lett. 49A, 259–260 (1974).

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Raether, H.

I. Pockrand and H. Raether, “Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[Crossref]

K. Holst and H. Raether, “The influence of thin surface films on the plasma resonance emission,” Opt. Commun. 2, 312–316 (1970).
[Crossref]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Sekkat, Z.

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[Crossref]

Shirakura, A.

S. A. Benton, S. M. Birner, and A. Shirakura, “Edge-lit rainbow holograms,” Proc. SPIE 1212, 149–157 (1990).
[Crossref]

Stroke, G. W.

G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally-focused images and ‘in-line’ background,” Phys. Lett. 23, 325–327 (1966).
[Crossref]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

Upatnieks, J.

Verma, P.

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008).
[Crossref]

West, J.

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[Crossref]

Zheludev, N. I.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Adv. Mater. (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. Ozaki, J. Kato, and S. Kawata, “Blur suppression in holographic imaging with use of surface plasmons,” Appl. Phys. Lett. 101, 241117 (2012).
[Crossref]

T. Okamoto, F. H’Dhili, and S. Kawata, “Towards plasmonic band gap laser,” Appl. Phys. Lett. 85, 3968–3970 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

L. H. Lin, “Edge-illuminated hologram,” J. Opt. Soc. Am. 60, 714A (1970).
[Crossref]

Nano Lett. (2)

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]

C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Immunotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett. 5, 709–711 (2005).
[Crossref]

Nat. Photonics (2)

S. Kawata, A. Ono, and P. Verma, “Subwavelength colour imaging with a metallic nanolens,” Nat. Photonics 2, 438–442 (2008).
[Crossref]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[Crossref]

Opt. Commun. (3)

I. Pockrand and H. Raether, “Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study,” Opt. Commun. 18, 395–399 (1976).
[Crossref]

N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[Crossref]

K. Holst and H. Raether, “The influence of thin surface films on the plasma resonance emission,” Opt. Commun. 2, 312–316 (1970).
[Crossref]

Opt. Lett. (1)

Phys. Lett. (2)

G. W. Stroke, “White-light reconstruction of holographic images using transmission holograms recorded with conventionally-focused images and ‘in-line’ background,” Phys. Lett. 23, 325–327 (1966).
[Crossref]

I. Pockrand, “Reflection of light from periodically corrugated silver films near the plasma frequency,” Phys. Lett. 49A, 259–260 (1974).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Proc. SPIE (1)

S. A. Benton, S. M. Birner, and A. Shirakura, “Edge-lit rainbow holograms,” Proc. SPIE 1212, 149–157 (1990).
[Crossref]

Science (1)

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white light illumination,” Science 332, 218–220 (2011).
[Crossref]

Sens. Actuators (1)

C. Nylander, B. Liedberg, and T. Lind, “Gas detection by means of surface plasmon resonance,” Sens. Actuators 3, 79–88 (1982).
[Crossref]

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[Crossref]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Excitation of SPPs by light waves. Light is illuminated at the incident angle θ, which is larger than the critical angle. When the wave vector of SPPs (kspp) equals that of incident light in the x component (kgx), SPPs are excited. na, nm(ω), and ng are the refractive indices of air, silver, and glass, respectively.
Fig. 2.
Fig. 2. (a) Excitation of SPPs on silver film covered with SiO2 film. (b) Relationship between the incident angle of white light and color of SPPs to be excited when tm is 55 nm. The blackness of the band indicates reflectance at each wavelength. Low reflectance (dark part) corresponds to excitation of SPPs. When td is 0 nm, the incident angle θ for red, green, and blue SPP excitation is 42.8°, 43.7°, and 45.2°, respectively. When tm is 25 nm, the incident angle θ for red, green, and blue SPP excitation is 45.6°, 48.6°, and 54.1°, respectively. When SiO2 thickness is 50 nm or more, blue SPPs cannot be excited.
Fig. 3.
Fig. 3. (a) Relationship between the incident angle of white light and SPP color when tm is 35 nm. When bandwidth was broadened, color selectivity became worse compared with Fig. 2(b). (b) Relationship between the incident angle of white light and the SPP color when tm is 75 nm. SPP-excitation efficiency decreased compared with Fig. 2(b).
Fig. 4.
Fig. 4. (a) Dielectric hologram on a silver surface on which SPPs are excited. SPPs propagating on the silver surface are diffracted by the hologram. The diffracted waves focus an image. (b) Reconstructed image with color shift in the center. (c) Cross section of a hologram that reconstructs images with uneven color such as in (b). The center of the hologram is thinner than both ends. (The modulation pitch is several hundred nanometers and the depth is several dozen nanometers in actual SPP holograms.) (d) Relationship between the effective thickness of the hologram and the color of SPPs (53° illumination angle).
Fig. 5.
Fig. 5. (a) Silver-relief hologram. SPPs are excited on the hologram made of silver-film corrugations. SPPs are diffracted by the corrugations. The diffracted waves focus an image. (b) Image reconstructed from the silver-relief SPP hologram. No color shifts occur. [Compare it to Fig. 4(b).] (c) Normalized brightness of the image, where the center is brighter than both ends.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

kgx=ωcngsinθ,
kspp=ωc(na2nm(ω)2na2+nm(ω)2)1/2,
θ=sin1{1ng(na2nm(ω)2na2+nm(ω)2)1/2}.

Metrics