Abstract

A solid-state green laser generating subnanosecond pulses with adjustable kilohertz repetition rate is presented. This pulse laser system is composed of a Q-switched and mode-locked YVO4/Nd:YVO4/KTP laser simultaneously modulated by an electro-optic (EO) modulator and a central semiconductor saturable absorption mirror. Because the repetition rate of the Q-switched envelope in this laser depends on the modulation frequency of the EO modulator, so long as the pulsewidth of the Q-switched envelope is shorter than the cavity roundtrip transmit time, i.e., the time interval of two neighboring mode-locking pulses, only one mode-locking pulse exists underneath a Q-switched envelope, resulting in the generation of subnanosecond pulses with kilohertz repetition rate. The experimental results show that the pulsewidth of subnanosecond pulses decreases with increasing pump power and the shortest pulse generated at 1 kHz was 450 ps with pulse energy as high as 252 μJ, corresponding to a peak power of 560 kW. In addition, this laser was confirmed to have high stability, and the pulse repetition rate could be freely adjusted from 1 to 4 kHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Antal and R. Szipocs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107, 17–22 (2012).
    [CrossRef]
  2. H. Sayinc, D. Mortag, D. Wandt, J. Neumann, and D. Kracht, “Sub-100 fs pulses from a low repetition rate Yb-doped fiber laser,” Opt. Express 17, 5731–5735 (2009).
    [CrossRef]
  3. J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
    [CrossRef]
  4. K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications (Optical Society of America, 1996), paper OMD4.
  5. F. Dausinger, H. Hügel, and V. Konov, “Micro-machining with ultra-short laser pulses, from basic understanding to technical application,” Proc. SPIE 5147, 106–115 (2003).
    [CrossRef]
  6. A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
    [CrossRef]
  7. K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, June 2006, pp. 25–30.
  8. S. Kobtsev, S. Kukarin, and Y. Fedotov, “Ultra-low repetition rate mode-locked fiber laser with high-energy pulses,” Opt. Express 16, 21936–21941 (2008).
    [CrossRef]
  9. J. L. Jhu, J. H. Lin, S. S. Jyu, and Y. Lai, “Tunable pulsewidth from low repetition rate mode-locked Yb-doped fiber laser,” presented at the 17th Opto-Electronics and Communications Conference (OECC 2012), Busan, Korea, July 2012, pp. 369–370.
  10. V. Z. Kolev, M. J. Lederer, B. Luther-Davies, and A. V. Rode, “Passive mode locking of a Nd:YVO4 laser with an extra-long optical resonator,” Opt. Lett. 28, 1275–1277 (2003).
    [CrossRef]
  11. D. N. Papadopoulos, S. Forget, M. Delaigue, F. Druon, F. Balembois, and P. Georges, “Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate,” Opt. Lett. 28, 1838–1840 (2003).
    [CrossRef]
  12. A. Killi, J. Dörring, U. Morgner, M. J. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13, 1916–1922 (2005).
    [CrossRef]
  13. U. Wegner, J. Meier, and M. J. Lederer, “Compact picosecond mode-locked and cavity-dumped Nd:YVO4 laser,” Opt. Express 17, 23098–23103 (2009).
    [CrossRef]
  14. L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
    [CrossRef]
  15. M. J. Strain, M. Zanola, G. Mezösi, and M. Sorel, “Ultrashort Q-switched pulses from a passively mode-locked distributed Bragg reflector semiconductor laser,” Opt. Lett. 37, 4732–4734 (2012).
    [CrossRef]
  16. C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, “Actively Q-switched and mode-locked all-fiber lasers,” Laser Phys. Lett. 7, 870–875 (2010).
    [CrossRef]
  17. K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
    [CrossRef]
  18. G. Zhang, S. Zhao, G. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49, 4524–4530 (2010).
    [CrossRef]
  19. T. Li, S. Zhao, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18, 10315–10322 (2010).
    [CrossRef]
  20. G. Zhang, S. Zhao, G. Li, K. Yang, D. Li, K. Cheng, and Y. Wang, “Stable sub nanosecond pulse generation from dual-loss-modulated QML YVO4/NdYVO4 laser with EO and middle SESAM,” Opt. Commun. 285, 5347–5350 (2012).
    [CrossRef]
  21. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [CrossRef]
  22. G. C. Valley and A. L. Smirl, “Theory of transient energy transfer in gallium arsenide,” IEEE J. Quantum Electron. 24, 304–310 (1988).
    [CrossRef]
  23. Z. Ren, Z. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282, 263–266 (2009).
    [CrossRef]
  24. P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
    [CrossRef]

2012 (4)

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

P. G. Antal and R. Szipocs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107, 17–22 (2012).
[CrossRef]

G. Zhang, S. Zhao, G. Li, K. Yang, D. Li, K. Cheng, and Y. Wang, “Stable sub nanosecond pulse generation from dual-loss-modulated QML YVO4/NdYVO4 laser with EO and middle SESAM,” Opt. Commun. 285, 5347–5350 (2012).
[CrossRef]

M. J. Strain, M. Zanola, G. Mezösi, and M. Sorel, “Ultrashort Q-switched pulses from a passively mode-locked distributed Bragg reflector semiconductor laser,” Opt. Lett. 37, 4732–4734 (2012).
[CrossRef]

2010 (5)

T. Li, S. Zhao, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18, 10315–10322 (2010).
[CrossRef]

G. Zhang, S. Zhao, G. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49, 4524–4530 (2010).
[CrossRef]

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, “Actively Q-switched and mode-locked all-fiber lasers,” Laser Phys. Lett. 7, 870–875 (2010).
[CrossRef]

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

2009 (3)

2008 (1)

2005 (1)

2004 (1)

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

2003 (3)

1999 (1)

1997 (1)

J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
[CrossRef]

1988 (1)

G. C. Valley and A. L. Smirl, “Theory of transient energy transfer in gallium arsenide,” IEEE J. Quantum Electron. 24, 304–310 (1988).
[CrossRef]

Abramski, K. M.

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Alsous, M. B.

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

An, J.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Andres, M. V.

C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, “Actively Q-switched and mode-locked all-fiber lasers,” Laser Phys. Lett. 7, 870–875 (2010).
[CrossRef]

Antal, P. G.

P. G. Antal and R. Szipocs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107, 17–22 (2012).
[CrossRef]

Antonczak, A. J.

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Bai, J.

Z. Ren, Z. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282, 263–266 (2009).
[CrossRef]

Balembois, F.

Cheng, K.

G. Zhang, S. Zhao, G. Li, K. Yang, D. Li, K. Cheng, and Y. Wang, “Stable sub nanosecond pulse generation from dual-loss-modulated QML YVO4/NdYVO4 laser with EO and middle SESAM,” Opt. Commun. 285, 5347–5350 (2012).
[CrossRef]

G. Zhang, S. Zhao, G. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49, 4524–4530 (2010).
[CrossRef]

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Cruz, J. L.

C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, “Actively Q-switched and mode-locked all-fiber lasers,” Laser Phys. Lett. 7, 870–875 (2010).
[CrossRef]

Cuadrado-Laborde, C.

C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, “Actively Q-switched and mode-locked all-fiber lasers,” Laser Phys. Lett. 7, 870–875 (2010).
[CrossRef]

Dausinger, F.

F. Dausinger, H. Hügel, and V. Konov, “Micro-machining with ultra-short laser pulses, from basic understanding to technical application,” Proc. SPIE 5147, 106–115 (2003).
[CrossRef]

Delaigue, M.

Diez, A.

C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, “Actively Q-switched and mode-locked all-fiber lasers,” Laser Phys. Lett. 7, 870–875 (2010).
[CrossRef]

Dörring, J.

Druon, F.

Dudzik, G.

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Fatone, M.

J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
[CrossRef]

Fedotov, Y.

Fong, K. H.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, June 2006, pp. 25–30.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications (Optical Society of America, 1996), paper OMD4.

Forget, S.

Frei, J.

Ge, H. B.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Ge, Y.

Z. Ren, Z. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282, 263–266 (2009).
[CrossRef]

George, J.

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

Georges, P.

Guo, L.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Gupta, P. K.

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

Hestdalen, C.

J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
[CrossRef]

Hönninger, C.

Hou, W.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Huang, Z.

Z. Ren, Z. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282, 263–266 (2009).
[CrossRef]

Hügel, H.

F. Dausinger, H. Hügel, and V. Konov, “Micro-machining with ultra-short laser pulses, from basic understanding to technical application,” Proc. SPIE 5147, 106–115 (2003).
[CrossRef]

Jhu, J. L.

J. L. Jhu, J. H. Lin, S. S. Jyu, and Y. Lai, “Tunable pulsewidth from low repetition rate mode-locked Yb-doped fiber laser,” presented at the 17th Opto-Electronics and Communications Conference (OECC 2012), Busan, Korea, July 2012, pp. 369–370.

Jia, S.

Z. Ren, Z. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282, 263–266 (2009).
[CrossRef]

Jyu, S. S.

J. L. Jhu, J. H. Lin, S. S. Jyu, and Y. Lai, “Tunable pulsewidth from low repetition rate mode-locked Yb-doped fiber laser,” presented at the 17th Opto-Electronics and Communications Conference (OECC 2012), Busan, Korea, July 2012, pp. 369–370.

Kaczmarek, P. R.

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Keller, U.

Kikuchi, K.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, June 2006, pp. 25–30.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications (Optical Society of America, 1996), paper OMD4.

Killi, A.

Kim, S. Y.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications (Optical Society of America, 1996), paper OMD4.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, June 2006, pp. 25–30.

Kobtsev, S.

Kolev, V. Z.

Konov, V.

F. Dausinger, H. Hügel, and V. Konov, “Micro-machining with ultra-short laser pulses, from basic understanding to technical application,” Proc. SPIE 5147, 106–115 (2003).
[CrossRef]

Kopf, D.

Koziol, P.

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Kracht, D.

Kukarin, S.

Lai, Y.

J. L. Jhu, J. H. Lin, S. S. Jyu, and Y. Lai, “Tunable pulsewidth from low repetition rate mode-locked Yb-doped fiber laser,” presented at the 17th Opto-Electronics and Communications Conference (OECC 2012), Busan, Korea, July 2012, pp. 369–370.

Leavitt, J.

J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
[CrossRef]

Lederer, M. J.

Li, D.

G. Zhang, S. Zhao, G. Li, K. Yang, D. Li, K. Cheng, and Y. Wang, “Stable sub nanosecond pulse generation from dual-loss-modulated QML YVO4/NdYVO4 laser with EO and middle SESAM,” Opt. Commun. 285, 5347–5350 (2012).
[CrossRef]

T. Li, S. Zhao, K. Yang, G. Li, and D. Li, “Dual-loss-modulated Q-switched and mode-locked YVO4/Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber,” Opt. Express 18, 10315–10322 (2010).
[CrossRef]

Li, D. C.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Li, G.

Li, G. Q.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Li, J. M.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Li, T.

Li, Y. F.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Lin, J. H.

J. L. Jhu, J. H. Lin, S. S. Jyu, and Y. Lai, “Tunable pulsewidth from low repetition rate mode-locked Yb-doped fiber laser,” presented at the 17th Opto-Electronics and Communications Conference (OECC 2012), Busan, Korea, July 2012, pp. 369–370.

Lin, X. C.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Luther-Davies, B.

Meier, J.

Mezösi, G.

Morgner, U.

Morier-Genoud, F.

Mortag, D.

Moser, M.

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

Nathan, T. P. S.

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

Neumann, J.

Obringer, J. W.

J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
[CrossRef]

Papadopoulos, D. N.

Paschotta, R.

Ranganathan, K.

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

Ren, Z.

Z. Ren, Z. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282, 263–266 (2009).
[CrossRef]

Rode, A. V.

Sayinc, H.

Set, S. Y.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications (Optical Society of America, 1996), paper OMD4.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, June 2006, pp. 25–30.

Sharma, S. K.

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

Smirl, A. L.

G. C. Valley and A. L. Smirl, “Theory of transient energy transfer in gallium arsenide,” IEEE J. Quantum Electron. 24, 304–310 (1988).
[CrossRef]

Sorel, M.

Sotor, J. Z.

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Strain, M. J.

Sun, L.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Szipocs, R.

P. G. Antal and R. Szipocs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107, 17–22 (2012).
[CrossRef]

Tillinghast, H. S.

J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
[CrossRef]

Valley, G. C.

G. C. Valley and A. L. Smirl, “Theory of transient energy transfer in gallium arsenide,” IEEE J. Quantum Electron. 24, 304–310 (1988).
[CrossRef]

Wandt, D.

Wang, Y.

G. Zhang, S. Zhao, G. Li, K. Yang, D. Li, K. Cheng, and Y. Wang, “Stable sub nanosecond pulse generation from dual-loss-modulated QML YVO4/NdYVO4 laser with EO and middle SESAM,” Opt. Commun. 285, 5347–5350 (2012).
[CrossRef]

Waz, A. T.

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Wegner, U.

Xiong, B.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Yaguchi, H.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications (Optical Society of America, 1996), paper OMD4.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, June 2006, pp. 25–30.

Yan, X.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Yang, K.

Yang, K. J.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Yu, Z. G.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Zanola, M.

Zhang, G.

G. Zhang, S. Zhao, G. Li, K. Yang, D. Li, K. Cheng, and Y. Wang, “Stable sub nanosecond pulse generation from dual-loss-modulated QML YVO4/NdYVO4 laser with EO and middle SESAM,” Opt. Commun. 285, 5347–5350 (2012).
[CrossRef]

G. Zhang, S. Zhao, G. Li, K. Yang, K. Cheng, and Y. Zhang, “Stable Q-switched and mode-locked Nd:GdVO4/KTP green laser with dual-loss-modulation,” Appl. Opt. 49, 4524–4530 (2010).
[CrossRef]

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Zhang, L.

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Zhang, Y.

Zhao, S.

Zhao, S. Z.

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

AIP Conf. Proc. (1)

A. J. Antończak, P. Kozioł, A. T. Wąż, J. Z. Sotor, G. Dudzik, P. R. Kaczmarek, and K. M. Abramski, “Underwater green laser vibrometry,” AIP Conf. Proc. 1457, 251–256 (2012).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, “Analysis of laser-diode end-pumped intracavity frequency-doubled, passively Q-switched and mode-locked Nd:YVO4 laser,” Appl. Phys. B 79, 713–720 (2004).
[CrossRef]

P. G. Antal and R. Szipocs, “Tunable, low-repetition-rate, cost-efficient femtosecond Ti:sapphire laser for nonlinear microscopy,” Appl. Phys. B 107, 17–22 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. C. Valley and A. L. Smirl, “Theory of transient energy transfer in gallium arsenide,” IEEE J. Quantum Electron. 24, 304–310 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

L. Zhang, L. Guo, B. Xiong, X. Yan, L. Sun, W. Hou, X. C. Lin, and J. M. Li, “LD side-pumped high beam quality passive Q-switched and mode-locked Nd:YAG laser based on SESAM,” Laser Phys. 20, 1798–1801 (2010).
[CrossRef]

Laser Phys. Lett. (1)

C. Cuadrado-Laborde, A. Diez, J. L. Cruz, and M. V. Andres, “Actively Q-switched and mode-locked all-fiber lasers,” Laser Phys. Lett. 7, 870–875 (2010).
[CrossRef]

Opt. Commun. (2)

Z. Ren, Z. Huang, S. Jia, Y. Ge, and J. Bai, “532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling,” Opt. Commun. 282, 263–266 (2009).
[CrossRef]

G. Zhang, S. Zhao, G. Li, K. Yang, D. Li, K. Cheng, and Y. Wang, “Stable sub nanosecond pulse generation from dual-loss-modulated QML YVO4/NdYVO4 laser with EO and middle SESAM,” Opt. Commun. 285, 5347–5350 (2012).
[CrossRef]

Opt. Express (5)

Opt. Laser Technol. (1)

K. Cheng, S. Z. Zhao, Y. F. Li, G. Q. Li, D. C. Li, K. J. Yang, J. An, G. Zhang, H. B. Ge, and Z. G. Yu, “Diode-pumped doubly Q-switched Nd:LuVO4 laser with AO modulator and GaAs saturable absorber,” Opt. Laser Technol. 42, 198–201 (2010).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

F. Dausinger, H. Hügel, and V. Konov, “Micro-machining with ultra-short laser pulses, from basic understanding to technical application,” Proc. SPIE 5147, 106–115 (2003).
[CrossRef]

Radiat. Res. (1)

J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” Radiat. Res. 147, 490–494 (1997).
[CrossRef]

Other (3)

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” in Optical Amplifiers and Their Applications (Optical Society of America, 1996), paper OMD4.

J. L. Jhu, J. H. Lin, S. S. Jyu, and Y. Lai, “Tunable pulsewidth from low repetition rate mode-locked Yb-doped fiber laser,” presented at the 17th Opto-Electronics and Communications Conference (OECC 2012), Busan, Korea, July 2012, pp. 369–370.

K. H. Fong, S. Y. Kim, K. Kikuchi, H. Yaguchi, and S. Y. Set, “Generation of low-repetition rate high-energy picosecond pulses from a single-wall carbon nanotube mode-locked fiber laser,” presented at the Optical Amplifiers and their Applications Conference (OAA 2006), Whistler, British Columbia, Canada, June 2006, pp. 25–30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of experimental setup for the dual-loss-modulated QML YVO4/Nd:YVO4/KTP laser.

Fig. 2.
Fig. 2.

Pulse duration of the Q-switched envelope versus incident pump power at different modulation frequencies.

Fig. 3.
Fig. 3.

Mode-locking pulse duration at different pump powers: (a) 6.52 W, (b) 7.69 W, (c) 12.3 W, and (d) 18.27 W.

Fig. 4.
Fig. 4.

Operating regime distribution of the laser as a function of the pump power and modulated repetition rate.

Fig. 5.
Fig. 5.

Pulse shape under different modulation frequencies and incident pump powers (a) 9.81 W and (b) 14.7 W.

Fig. 6.
Fig. 6.

Oscilloscope traces of a single mode-locking pulse train.

Fig. 7.
Fig. 7.

Average output power on the incident pump power at different modulation frequencies.

Fig. 8.
Fig. 8.

Pulse energy of the Q-switched envelope on the incident pump power at different modulation frequencies.

Fig. 9.
Fig. 9.

Pulse energy of the mode-locking pulse on the incident pump power at different modulation frequencies.

Metrics