Abstract

This paper presents the frequency-dependent sensitivity of slab-coupled optical fiber sensors (SCOSs). This dependence is caused by the frequency characteristics of the relative permittivity. We show experimentally the frequency dependence of SCOS sensitivity for frequencies in the range of 1 kHz to 1 MHz for SCOS fabricated with both potassium titanyl phosphate (KTP) and lithium niobate (LiNbO3). We conclude that x-cut KTP SCOSs are preferred for measuring fields above 300 kHz as they are 1.55× more sensitive than x-cut LiNbO3 SCOSs to the higher frequency fields. However, since KTP SCOSs experience increasing permittivity for low frequencies, SCOSs made with LiNbO3 may be used for low frequency sensing applications due to their flat sensitivity response. For a 10 kHz electric field, an x cut LiNbO3 SCOS is approximately 3.43× more sensitive than an x-cut KTP SCOS.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Gibson, J. Kvavle, R. Selfridge, and S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139–2144 (2007).
    [CrossRef]
  2. R. Gibson, R. Selfridge, and S. Schultz, “Electric field sensor array from cavity resonance between optical D-fiber and multiple slab waveguides,” Appl. Opt. 48, 3695–3701 (2009).
    [CrossRef]
  3. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234–2240 (2008).
    [CrossRef]
  4. J. Noren, “Electric field sensing in a railgun using slab coupled optical fiber sensors,” M.S. thesis (Brigham Young University, 2012).
  5. B. Shreeve, R. Gibson, D. Perry, D. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Non-intrusive field characterization in interior cavities with slab coupled optical sensor,” J. Dir. Energy 19, 69–72 (2010).
  6. S. Chadderdon, L. Woodard, D. Perry, R. H. Selfridge, and S. M. Schultz, “Single tunable laser interrogation of slab-coupled optical sensors through resonance tuning,” Appl. Opt. 52, 2682–2687 (2013).
    [CrossRef]
  7. D. Perry, S. Chadderdon, R. Forber, W. Wang, R. Selfridge, and S. Schultz, “Multiaxis electric field sensing using slab coupled optical sensors,” Appl. Opt. 52, 1968–1977 (2013).
    [CrossRef]
  8. J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
    [CrossRef]
  9. K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
    [CrossRef]
  10. C. R. Miller, “Electromagnetic pulse threats in 2010,” (Center for Strategy and Technology, Air War College, Air University, Maxwell AFB, AL, 2005).
  11. A. E. Zielinski and C. D. Le, “In-bore electric and magnetic field enviroment,” IEEE Trans. Magn. 35, 457–462 (1999).
    [CrossRef]
  12. K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Opt. Commun. 230, 137–144 (2004).
    [CrossRef]
  13. C. A. Millar, M. C. Brierley, and R. S. Mallinson, “Exposed-core single-mode-fiber channel-dropping filter using high-index overlay waveguide,” Opt. Lett. 12, 284–286 (1987).
    [CrossRef]
  14. S. Chadderdon, L. Woodard, D. Perry, R. H. Selfridge, and S. M. Schultz, “Improvements in electric field sensor sensitivity by exploiting a tangential field condition,” Appl. Opt. 52, 5742–5747 (2013).
    [CrossRef]
  15. S. Chadderdon, R. Gibson, R. H. Selfridge, S. M. Schultz, W. C. Wang, R. Forber, J. Luo, and A. K. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
    [CrossRef]
  16. R. W. Boyd, Nonlinear Optics (Academic, 2003), p. 578.
  17. J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. Lett. 3, 321–343 (1877).
  18. J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. Lett. 5, 161–171 (1878).
  19. F. T. Ulaby, Fundamentals of Applied Electromagnetics (Pearson, 2004).
  20. S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
    [CrossRef]
  21. A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
    [CrossRef]
  22. Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).
  23. Casix, “Lithium niobate crystal series,” 2013, http://www.fabrinet.co.th/custappl/casix/aa/product/prod_cry_linbo3.html .

2013 (3)

2011 (1)

2010 (1)

B. Shreeve, R. Gibson, D. Perry, D. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Non-intrusive field characterization in interior cavities with slab coupled optical sensor,” J. Dir. Energy 19, 69–72 (2010).

2009 (1)

2008 (1)

2007 (1)

2004 (1)

K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Opt. Commun. 230, 137–144 (2004).
[CrossRef]

2000 (1)

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

1999 (1)

A. E. Zielinski and C. D. Le, “In-bore electric and magnetic field enviroment,” IEEE Trans. Magn. 35, 457–462 (1999).
[CrossRef]

1993 (1)

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

1987 (1)

1986 (1)

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

1985 (1)

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

1967 (1)

Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).

1878 (1)

J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. Lett. 5, 161–171 (1878).

1877 (1)

J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. Lett. 3, 321–343 (1877).

Arweiler, C. B.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Bierlein, J. D.

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 2003), p. 578.

Brierley, M. C.

Chadderdon, S.

Dhar, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Forber, R.

Furusawa, S.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Gibson, R.

Hayasi, H.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Hirano, S.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Ishibashi, Y.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Jen, A. K.

Kerr, J.

J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. Lett. 5, 161–171 (1878).

J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. Lett. 3, 321–343 (1877).

Kim, K. T.

K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Opt. Commun. 230, 137–144 (2004).
[CrossRef]

Kvavle, J.

Kwoen, G.

K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Opt. Commun. 230, 137–144 (2004).
[CrossRef]

Le, C. D.

A. E. Zielinski and C. D. Le, “In-bore electric and magnetic field enviroment,” IEEE Trans. Magn. 35, 457–462 (1999).
[CrossRef]

Luo, J.

S. Chadderdon, R. Gibson, R. H. Selfridge, S. M. Schultz, W. C. Wang, R. Forber, J. Luo, and A. K. Jen, “Electric-field sensors utilizing coupling between a D-fiber and an electro-optic polymer slab,” Appl. Opt. 50, 3505–3512 (2011).
[CrossRef]

B. Shreeve, R. Gibson, D. Perry, D. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Non-intrusive field characterization in interior cavities with slab coupled optical sensor,” J. Dir. Energy 19, 69–72 (2010).

Mallinson, R. S.

Mansingh, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

Millar, C. A.

Miller, C. R.

C. R. Miller, “Electromagnetic pulse threats in 2010,” (Center for Strategy and Technology, Air War College, Air University, Maxwell AFB, AL, 2005).

Miyamoto, A.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Noda, K.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Noren, J.

J. Noren, “Electric field sensing in a railgun using slab coupled optical fiber sensors,” M.S. thesis (Brigham Young University, 2012).

Ohmachi, Y.

Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).

Perry, D.

Sakamota, W.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Sasaki, T.

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Sawamoto, K.

Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).

Schultz, S.

Schultz, S. M.

Selfridge, D.

B. Shreeve, R. Gibson, D. Perry, D. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Non-intrusive field characterization in interior cavities with slab coupled optical sensor,” J. Dir. Energy 19, 69–72 (2010).

Selfridge, R.

Selfridge, R. H.

Shreeve, B.

B. Shreeve, R. Gibson, D. Perry, D. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Non-intrusive field characterization in interior cavities with slab coupled optical sensor,” J. Dir. Energy 19, 69–72 (2010).

Toyoda, H.

Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).

Ulaby, F. T.

F. T. Ulaby, Fundamentals of Applied Electromagnetics (Pearson, 2004).

Wang, W.

Wang, W. C.

Woodard, L.

Yogo, T.

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

Yoon, D. S.

K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Opt. Commun. 230, 137–144 (2004).
[CrossRef]

Zielinski, A. E.

A. E. Zielinski and C. D. Le, “In-bore electric and magnetic field enviroment,” IEEE Trans. Magn. 35, 457–462 (1999).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

J. D. Bierlein and C. B. Arweiler, “Electro-optic and dielectric properties of KTiOPO4,” Appl. Phys. Lett. 49, 917–919 (1986).
[CrossRef]

IEEE Trans. Magn. (1)

A. E. Zielinski and C. D. Le, “In-bore electric and magnetic field enviroment,” IEEE Trans. Magn. 35, 457–462 (1999).
[CrossRef]

J. Dir. Energy (1)

B. Shreeve, R. Gibson, D. Perry, D. Selfridge, S. Schultz, R. Forber, W. Wang, and J. Luo, “Non-intrusive field characterization in interior cavities with slab coupled optical sensor,” J. Dir. Energy 19, 69–72 (2010).

J. Mater. Sci. Lett. (1)

K. Noda, W. Sakamota, T. Yogo, and S. Hirano, “Dielectric properties of KTiOPO4,” J. Mater. Sci. Lett. 19, 69–72 (2000).
[CrossRef]

J. Phys. D (1)

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D 18, 2059–2071 (1985).
[CrossRef]

J. Phys. Soc. Jpn. (1)

S. Furusawa, H. Hayasi, Y. Ishibashi, A. Miyamoto, and T. Sasaki, “Ionic conductivity of quasi-one-dimensional superionic conductor KTiOPO4 (KTP) single crystal,” J. Phys. Soc. Jpn. 62, 183–195 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Ohmachi, K. Sawamoto, and H. Toyoda, “Dielectric properties of LiNbO3 single crystal up to 9 Gc,” Jpn. J. Appl. Phys. 6, 1467–1468 (1967).

Opt. Commun. (1)

K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Opt. Commun. 230, 137–144 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Philos. Mag. Lett. (2)

J. Kerr, “On rotation of the plane of polarization by reflection from the pole of a magnet,” Philos. Mag. Lett. 3, 321–343 (1877).

J. Kerr, “On reflection of polarized light from the equatorial surface of a magnet,” Philos. Mag. Lett. 5, 161–171 (1878).

Other (5)

F. T. Ulaby, Fundamentals of Applied Electromagnetics (Pearson, 2004).

R. W. Boyd, Nonlinear Optics (Academic, 2003), p. 578.

C. R. Miller, “Electromagnetic pulse threats in 2010,” (Center for Strategy and Technology, Air War College, Air University, Maxwell AFB, AL, 2005).

J. Noren, “Electric field sensing in a railgun using slab coupled optical fiber sensors,” M.S. thesis (Brigham Young University, 2012).

Casix, “Lithium niobate crystal series,” 2013, http://www.fabrinet.co.th/custappl/casix/aa/product/prod_cry_linbo3.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

SCOS device and a standard 1/4 Watt resistor.

Fig. 2.
Fig. 2.

Basic SCOS consisting of an electro-optic crystal placed on the flat surface of a D-fiber. (a) With a z cut crystal, it is sensitive to electric fields normal to the surface of the crystal. (b) With an x cut crystal, it is sensitive to electric fields transverse to the surface of the crystal.

Fig. 3.
Fig. 3.

Transmission spectrum of SCOS. A SCOS is interrogated with a laser tuned to the edge of a resonance.

Fig. 4.
Fig. 4.

Model used for the Maxwell 2D simulation to determine the strength of the electric field within normal and transverse slab waveguides.

Fig. 5.
Fig. 5.

Electric field strength relative to position for transverse and normal slab waveguides.

Fig. 6.
Fig. 6.

Eslab/Einc ratio as function RF permittivity, εslab.

Fig. 7.
Fig. 7.

SCOS interrogation system.

Fig. 8.
Fig. 8.

Transmission spectra for SCOSs fabricated with z cut KTP (zKTP), x-cut KTP (xKTP), and x-cut LiNbO3 (xLN) crystals as the slab waveguides.

Fig. 9.
Fig. 9.

Frequency dependence of wavelength shift for KTP and LiNbO3 SCOSs.

Fig. 10.
Fig. 10.

Frequency dependence of relative permittivity for KTP and LiNbO3 crystals.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λm=2tmn02Nf2,
P=Po+(ΔPΔλ)(ΔλEinc)Einc,
Δn=12n03rEslab,
Δn=12n03rfE(Einc),
fE(Einc)=EslabEinc=1.36εslab+0.46,
fE(Einc)=EslabEinc=9.75εslab+10.1.
ΔλEinc=12λno4no2Nf2rfE,

Metrics