Abstract

We report a high-power all-fiber format pulsed laser source at 1064nm in a master oscillator–power amplifier configuration. The seed source is an acousto-optic Q-switched fiber laser with a varied pulse duration and repetition rate. The output power of the oscillator is 1W, and two double-cladding Yb-doped fiber amplifiers were used to boost the average power of the seed. >230W average power was achieved for 1.4μs pulses at 100 kHz repetition rate. The optical-to-optical efficiency of the main amplifier is 72.81%.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  2. http://optics.org/news/3/10/44 .
  3. J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
    [CrossRef]
  4. J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
    [CrossRef]
  5. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tunnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37, 1073–1075 (2012).
    [CrossRef]
  6. R. Su, P. Zhou, H. Xiao, X. Wang, and X. Xu, “150 W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format,” Appl. Opt. 51, 3655–3659 (2012).
    [CrossRef]
  7. X. Wang, P. Zhou, R. Su, H. Xiao, X. Xu, and Z. Liu, “A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser,” Laser Phys. 23, 015101 (2013).
    [CrossRef]
  8. D. S. Norman, M. Brodsky, D. J. Gabzdyl, D. M. Durkin, and D. H. Gillooly, “Pulsed fiber lasers for precision marking, engraving and micro-machine,” presented at the Environnement Professionnel Microtechnologies (EPMT) Conference, Lausanne, Switzerland, 10June, 2010.
  9. H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
    [CrossRef]
  10. J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
    [CrossRef]
  11. B. Peng, Q. Liu, M. Gong, and P. Yan, “Acousto-optic Q-switched cladding-pumped ytterbium-doped fiber laser,” Chin. Opt. Lett. 5, 415–417 (2007).
  12. J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
    [CrossRef]
  13. Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
    [CrossRef]
  14. H. Zhang, X. Wang, P. Zhou, Z. Gong, and X. Xu, “6 mJ, high-average-power, all-fiberized Q-switched fiber master oscillator power amplifier with low repetition rate,” Appl. Opt. 51, 6933–6936 (2012).
    [CrossRef]
  15. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266 (2008).
    [CrossRef]

2013 (1)

X. Wang, P. Zhou, R. Su, H. Xiao, X. Xu, and Z. Liu, “A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser,” Laser Phys. 23, 015101 (2013).
[CrossRef]

2012 (3)

2011 (1)

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

2010 (2)

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

2009 (1)

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

2008 (2)

2007 (1)

2002 (1)

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

1995 (1)

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Barty, C. P. J.

Beach, R. J.

Brodsky, M.

D. S. Norman, M. Brodsky, D. J. Gabzdyl, D. M. Durkin, and D. H. Gillooly, “Pulsed fiber lasers for precision marking, engraving and micro-machine,” presented at the Environnement Professionnel Microtechnologies (EPMT) Conference, Lausanne, Switzerland, 10June, 2010.

Clarkson, W. A.

Cocquelin, B.

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Dawson, J. W.

Deslandes, P.

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

Devilder, P.

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

Durkin, D. M.

D. S. Norman, M. Brodsky, D. J. Gabzdyl, D. M. Durkin, and D. H. Gillooly, “Pulsed fiber lasers for precision marking, engraving and micro-machine,” presented at the Environnement Professionnel Microtechnologies (EPMT) Conference, Lausanne, Switzerland, 10June, 2010.

Eidam, T.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

Feng, Y.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Feve, J. P.

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Franke, J.

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Gabzdyl, D. J.

D. S. Norman, M. Brodsky, D. J. Gabzdyl, D. M. Durkin, and D. H. Gillooly, “Pulsed fiber lasers for precision marking, engraving and micro-machine,” presented at the Environnement Professionnel Microtechnologies (EPMT) Conference, Lausanne, Switzerland, 10June, 2010.

Garman, R. J.

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Gillooly, D. H.

D. S. Norman, M. Brodsky, D. J. Gabzdyl, D. M. Durkin, and D. H. Gillooly, “Pulsed fiber lasers for precision marking, engraving and micro-machine,” presented at the Environnement Professionnel Microtechnologies (EPMT) Conference, Lausanne, Switzerland, 10June, 2010.

Gong, M.

Gong, Z.

Hadrich, S.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

Hanna, D. C.

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Heebner, J. E.

Hofer, S.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Jansen, F.

Jauregui, C.

Jiang, D.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Knoke, S.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Li, Y.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Liem, A.

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tunnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37, 1073–1075 (2012).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Limpert, J.

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tunnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37, 1073–1075 (2012).
[CrossRef]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Liu, Q.

Liu, Z.

X. Wang, P. Zhou, R. Su, H. Xiao, X. Xu, and Z. Liu, “A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser,” Laser Phys. 23, 015101 (2013).
[CrossRef]

Mackechnie, C. J.

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Makki, S.

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Messerly, M. J.

Meunier, A.

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

Misas, C. J.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

Morehead, J.

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Muendel, M.

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Nilsson, J.

Norman, D. S.

D. S. Norman, M. Brodsky, D. J. Gabzdyl, D. M. Durkin, and D. H. Gillooly, “Pulsed fiber lasers for precision marking, engraving and micro-machine,” presented at the Environnement Professionnel Microtechnologies (EPMT) Conference, Lausanne, Switzerland, 10June, 2010.

Pask, H. M.

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Pax, P. H.

Peng, B.

Pierrot, S.

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

Richardson, D. J.

Roser, F.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

Rothhardt, J.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

Saby, J.

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

Salin, F.

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

Schimpf, D. N.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

Seise, E.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

Shverdin, M. Y.

Siders, C. W.

Sridharan, A. K.

Stappaerts, E. A.

Stutzki, F.

Su, R.

X. Wang, P. Zhou, R. Su, H. Xiao, X. Xu, and Z. Liu, “A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser,” Laser Phys. 23, 015101 (2013).
[CrossRef]

R. Su, P. Zhou, H. Xiao, X. Wang, and X. Xu, “150 W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format,” Appl. Opt. 51, 3655–3659 (2012).
[CrossRef]

Tropper, A. C.

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

Tunnermann, A.

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tunnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37, 1073–1075 (2012).
[CrossRef]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Voelckel, H.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Wang, C.

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Wang, W.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Wang, X.

Xiao, H.

X. Wang, P. Zhou, R. Su, H. Xiao, X. Xu, and Z. Liu, “A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser,” Laser Phys. 23, 015101 (2013).
[CrossRef]

R. Su, P. Zhou, H. Xiao, X. Wang, and X. Xu, “150 W high-average-power, single-frequency nanosecond fiber laser in strictly all-fiber format,” Appl. Opt. 51, 3655–3659 (2012).
[CrossRef]

Xu, X.

Yan, P.

Zellmer, H.

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Zhang, D.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Zhang, H.

Zhang, K.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Zhao, G.

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Zhao, H.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Zhou, P.

Zhu, Ch.

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

J. Limpert, S. Hofer, A. Liem, H. Zellmer, A. Tunnermann, S. Knoke, and H. Voelckel, “100-W average-power, high-energy nanosecond fiber amplifier,” Appl. Phys. B 75, 477–479 (2002).
[CrossRef]

Chin. Opt. Lett. (1)

High Power Laser Part. Beams (1)

Y. Feng, W. Wang, Ch. Zhu, Y. Li, K. Zhang, D. Zhang, H. Zhao, and D. Jiang, “Experiment research of 100 W, all-fiber acousto-optic Q-switched fiber laser,” High Power Laser Part. Beams 23, 1444–1448 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

H. M. Pask, R. J. Garman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Sel. Top. Quantum Electron. 1, 2–13 (1995).
[CrossRef]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High repetition rate gigawatt peak power fiber laser systems: challenges, design, and experiment,” IEEE J. Sel. Top. Quantum Electron. 15, 159–169 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

X. Wang, P. Zhou, R. Su, H. Xiao, X. Xu, and Z. Liu, “A 280 W high average power, single-frequency all-fiber nanosecond pulsed laser,” Laser Phys. 23, 015101 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P. Devilder, P. Deslandes, and F. Salin, “High average and peak power pulsed fiber lasers at 1030 nm, 515 nm, and 343 nm,” Proc. SPIE 7580, 75800I (2010).
[CrossRef]

J. P. Feve, J. Morehead, S. Makki, J. Franke, M. Muendel, C. Wang, and G. Zhao, “Q-switched fiber lasers with controlled pulse shape,” Proc. SPIE 6873, 68730D (2008).
[CrossRef]

Other (2)

http://optics.org/news/3/10/44 .

D. S. Norman, M. Brodsky, D. J. Gabzdyl, D. M. Durkin, and D. H. Gillooly, “Pulsed fiber lasers for precision marking, engraving and micro-machine,” presented at the Environnement Professionnel Microtechnologies (EPMT) Conference, Lausanne, Switzerland, 10June, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the Q-switched all-fiber MOPA laser system. HR FBG, high reflection fiber Bragg grating; YDCF, Yb3+-doped double-cladding fiber; AOM, acousto-optical modulator; PR FBG, partial reflection fiber Bragg grating; ISO, isolator; PD, photodetector.

Fig. 2.
Fig. 2.

Average power of the laser pulses under different pump level when the repetition rate is fixed at 100 kHz.

Fig. 3.
Fig. 3.

(a) Pulse trains with different average power output from the final power amplifier. (b) Pulse shapes of the seed pulse and the amplified pulse with 230 W average power output from the final power amplifier.

Fig. 4.
Fig. 4.

Spectra of the amplified laser pulses with different average power output from the final power amplifier. Inset: beam profile for the laser pulses with 230W average power.

Metrics