Abstract

The ability to estimate mean particle size using simple, low-power optical instruments promises to greatly expand coverage of particle size measurements in the ocean and advance understanding of myriad processes from sediment transport to biological carbon sequestration. Here we present a method for estimating the mean diameter of particles in suspension from high-resolution time series of simple optical measurements, such as beam attenuation or optical backscattering. Validation results from a laboratory clay aggregation experiment show a good fit with independent mean particle diameter estimates in the 10–80 μm diameter range, with relative biases of 17%–38% and relative root mean square errors of 10%–24%. In the 80–200 μm range, quantitative validation data were not available, but our mean diameter estimates correlated strongly with particle settling rates.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dickie, S. Kerr, and P. Boudreau, “Size-dependent processes underlying regularities in ecosystem structure,” Ecol. Monogr. 57, 233–250 (1987).
    [CrossRef]
  2. S. Jennings and K. J. Warr, “Smaller predator-prey body size ratios in longer food chains,” Proc. R. Soc. B 270, 1413–1417 (2003).
    [CrossRef]
  3. V. S. Smetacek, “Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance,” Mar. Biol. 84, 239–251 (1985).
    [CrossRef]
  4. A. L. Alldredge and M. W. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
    [CrossRef]
  5. V. L. Asper and W. O. Smith, “Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica,” Deep Sea Res., Part I 50, 131–150 (2003).
  6. G. A. Jackson, “Effect of mixed layer depth on phytoplankton removal by coagulation and on the critical depth concept,” Deep Sea Res., Part I 55, 766–776 (2008).
  7. G. Fischer and G. Karakas, “Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean,” Biogeosciences 6, 85–102 (2009).
  8. J. C. Winterwerp and W. G. M. van Kesteren, Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment (Elsevier, 2004).
  9. G. C. Chang, T. D. Dickey, and A. J. Williams, “Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense,” J. Geophys. Res. 106, 9517–9531 (2001).
    [CrossRef]
  10. J. R. Gray and J. W. Gartner, “Technological advances in suspended-sediment surrogate monitoring,” Water Resour. Res.45 (2009).
    [CrossRef]
  11. K. J. Curran, P. S. Hill, and T. G. Milligan, “Fine-grained suspended sediment dynamics in the Eel River flood plume,” Cont. Shelf Res. 22, 2537–2550 (2002).
    [CrossRef]
  12. K. S. Shifrin, B. Z. Moroz, and A. N. Sakharov, “Determination of characteristics of a dispersion medium based on its transparency data,” Dokl. Akad. Nauk SSSR 199, 589–591 (1971).
  13. K. S. Shifrin, “The method of fluctuations,” in Physical Optics of Ocean Water (American Institute of Physics, 1988), pp. 224–232.
  14. W. Slade, E. Boss, and C. Russo, “Effects of particle aggregation and disaggregation on their inherent optical properties,” Opt. Express 19, 7945–7959 (2011).
    [CrossRef]
  15. J. M. Sullivan, M. Twardowski, J. R. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. A. Kokhanovsky, ed. (Springer, 2013), pp. 189–224.
  16. J. E. Freund, Mathematical Statistics, 2nd ed. (Prentice-Hall, 1971), pp. 212–216.
  17. W. D. Gardner, M. J. Richardson, and W. O. Smith, “Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica,” Deep Sea Res., Part II 47, 3423–3449 (2000).
  18. J. K. B. Bishop and T. J. Wood, “Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites,” Deep Sea Res., Part I 55, 1684–1706 (2008).
  19. N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).
  20. G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express 20, 21532–21551 (2012).
    [CrossRef]
  21. E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
    [CrossRef]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  23. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
    [CrossRef]
  24. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
    [CrossRef]
  25. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
    [CrossRef]
  26. W. Dietrich, “Settling velocity of natural particles,” Water Resour. Res. 18, 1615–1626 (1982).
    [CrossRef]
  27. E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
    [CrossRef]
  28. T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114, C09015 (2009).
    [CrossRef]
  29. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, 1–19 (2010).
    [CrossRef]
  30. O. Mikkelsen, T. Milligan, and P. Hill, “The influence of schlieren on in situ optical measurements used for particle characterization,” Limnol. Oceanogr. 6, 133–143 (2008).
  31. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
    [CrossRef]
  32. M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64, 431–451 (2006).
    [CrossRef]
  33. W. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” Oceanogr. Mar. Biol. 45, 1–38 (2007).
    [CrossRef]
  34. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
    [CrossRef]

2012 (1)

2011 (2)

W. Slade, E. Boss, and C. Russo, “Effects of particle aggregation and disaggregation on their inherent optical properties,” Opt. Express 19, 7945–7959 (2011).
[CrossRef]

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

2010 (1)

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, 1–19 (2010).
[CrossRef]

2009 (4)

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114, C09015 (2009).
[CrossRef]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
[CrossRef]

G. Fischer and G. Karakas, “Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean,” Biogeosciences 6, 85–102 (2009).

2008 (3)

G. A. Jackson, “Effect of mixed layer depth on phytoplankton removal by coagulation and on the critical depth concept,” Deep Sea Res., Part I 55, 766–776 (2008).

O. Mikkelsen, T. Milligan, and P. Hill, “The influence of schlieren on in situ optical measurements used for particle characterization,” Limnol. Oceanogr. 6, 133–143 (2008).

J. K. B. Bishop and T. J. Wood, “Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites,” Deep Sea Res., Part I 55, 1684–1706 (2008).

2007 (1)

W. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” Oceanogr. Mar. Biol. 45, 1–38 (2007).
[CrossRef]

2006 (2)

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64, 431–451 (2006).
[CrossRef]

2004 (1)

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

2003 (3)

V. L. Asper and W. O. Smith, “Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica,” Deep Sea Res., Part I 50, 131–150 (2003).

S. Jennings and K. J. Warr, “Smaller predator-prey body size ratios in longer food chains,” Proc. R. Soc. B 270, 1413–1417 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

2002 (1)

K. J. Curran, P. S. Hill, and T. G. Milligan, “Fine-grained suspended sediment dynamics in the Eel River flood plume,” Cont. Shelf Res. 22, 2537–2550 (2002).
[CrossRef]

2001 (3)

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

G. C. Chang, T. D. Dickey, and A. J. Williams, “Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense,” J. Geophys. Res. 106, 9517–9531 (2001).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

2000 (1)

W. D. Gardner, M. J. Richardson, and W. O. Smith, “Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica,” Deep Sea Res., Part II 47, 3423–3449 (2000).

1988 (1)

A. L. Alldredge and M. W. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[CrossRef]

1987 (1)

L. Dickie, S. Kerr, and P. Boudreau, “Size-dependent processes underlying regularities in ecosystem structure,” Ecol. Monogr. 57, 233–250 (1987).
[CrossRef]

1985 (1)

V. S. Smetacek, “Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance,” Mar. Biol. 84, 239–251 (1985).
[CrossRef]

1982 (1)

W. Dietrich, “Settling velocity of natural particles,” Water Resour. Res. 18, 1615–1626 (1982).
[CrossRef]

1971 (1)

K. S. Shifrin, B. Z. Moroz, and A. N. Sakharov, “Determination of characteristics of a dispersion medium based on its transparency data,” Dokl. Akad. Nauk SSSR 199, 589–591 (1971).

Alldredge, A. L.

A. L. Alldredge and M. W. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[CrossRef]

Asper, V. L.

V. L. Asper and W. O. Smith, “Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica,” Deep Sea Res., Part I 50, 131–150 (2003).

Babin, M.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Baratange, F.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Barnard, A. H.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Behrenfeld, M.

Behrenfeld, M. J.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express 20, 21532–21551 (2012).
[CrossRef]

M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64, 431–451 (2006).
[CrossRef]

Bishop, J. K. B.

J. K. B. Bishop and T. J. Wood, “Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites,” Deep Sea Res., Part I 55, 1684–1706 (2008).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Boss, E.

G. Dall’Olmo, E. Boss, M. J. Behrenfeld, and T. K. Westberry, “Particulate optical scattering coefficients along an Atlantic Meridional Transect,” Opt. Express 20, 21532–21551 (2012).
[CrossRef]

W. Slade, E. Boss, and C. Russo, “Effects of particle aggregation and disaggregation on their inherent optical properties,” Opt. Express 19, 7945–7959 (2011).
[CrossRef]

E. Boss, W. H. Slade, M. Behrenfeld, and G. Dall’Olmo, “Acceptance angle effects on the beam attenuation in the ocean,” Opt. Express 17, 1535–1550 (2009).
[CrossRef]

W. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” Oceanogr. Mar. Biol. 45, 1–38 (2007).
[CrossRef]

M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64, 431–451 (2006).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

Boudreau, P.

L. Dickie, S. Kerr, and P. Boudreau, “Size-dependent processes underlying regularities in ecosystem structure,” Ecol. Monogr. 57, 233–250 (1987).
[CrossRef]

Briggs, N.

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

Cetinic, I.

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

Chang, G. C.

G. C. Chang, T. D. Dickey, and A. J. Williams, “Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense,” J. Geophys. Res. 106, 9517–9531 (2001).
[CrossRef]

Clavano, W.

W. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” Oceanogr. Mar. Biol. 45, 1–38 (2007).
[CrossRef]

Curran, K. J.

K. J. Curran, P. S. Hill, and T. G. Milligan, “Fine-grained suspended sediment dynamics in the Eel River flood plume,” Cont. Shelf Res. 22, 2537–2550 (2002).
[CrossRef]

D’Asaro, E.

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

Dall’Olmo, G.

Dickey, T. D.

G. C. Chang, T. D. Dickey, and A. J. Williams, “Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense,” J. Geophys. Res. 106, 9517–9531 (2001).
[CrossRef]

Dickie, L.

L. Dickie, S. Kerr, and P. Boudreau, “Size-dependent processes underlying regularities in ecosystem structure,” Ecol. Monogr. 57, 233–250 (1987).
[CrossRef]

Dietrich, W.

W. Dietrich, “Settling velocity of natural particles,” Water Resour. Res. 18, 1615–1626 (1982).
[CrossRef]

Fell, F.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Fischer, G.

G. Fischer and G. Karakas, “Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean,” Biogeosciences 6, 85–102 (2009).

Fournier-Sicre, V.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Freund, J. E.

J. E. Freund, Mathematical Statistics, 2nd ed. (Prentice-Hall, 1971), pp. 212–216.

Gardner, W. D.

W. D. Gardner, M. J. Richardson, and W. O. Smith, “Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica,” Deep Sea Res., Part II 47, 3423–3449 (2000).

Gartner, J. W.

J. R. Gray and J. W. Gartner, “Technological advances in suspended-sediment surrogate monitoring,” Water Resour. Res.45 (2009).
[CrossRef]

Gray, A. M.

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

Gray, J. R.

J. R. Gray and J. W. Gartner, “Technological advances in suspended-sediment surrogate monitoring,” Water Resour. Res.45 (2009).
[CrossRef]

Herring, S.

Hill, P.

O. Mikkelsen, T. Milligan, and P. Hill, “The influence of schlieren on in situ optical measurements used for particle characterization,” Limnol. Oceanogr. 6, 133–143 (2008).

Hill, P. S.

K. J. Curran, P. S. Hill, and T. G. Milligan, “Fine-grained suspended sediment dynamics in the Eel River flood plume,” Cont. Shelf Res. 22, 2537–2550 (2002).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Jackson, G. A.

G. A. Jackson, “Effect of mixed layer depth on phytoplankton removal by coagulation and on the critical depth concept,” Deep Sea Res., Part I 55, 766–776 (2008).

Jennings, S.

S. Jennings and K. J. Warr, “Smaller predator-prey body size ratios in longer food chains,” Proc. R. Soc. B 270, 1413–1417 (2003).
[CrossRef]

Karakas, G.

G. Fischer and G. Karakas, “Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean,” Biogeosciences 6, 85–102 (2009).

Karp-Boss, L.

W. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” Oceanogr. Mar. Biol. 45, 1–38 (2007).
[CrossRef]

Kerr, S.

L. Dickie, S. Kerr, and P. Boudreau, “Size-dependent processes underlying regularities in ecosystem structure,” Ecol. Monogr. 57, 233–250 (1987).
[CrossRef]

Korotaev, G.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Kostadinov, T. S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114, C09015 (2009).
[CrossRef]

Lee, C.

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

Lee, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Loisel, H.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Macdonald, J. B.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Maritorena, S.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114, C09015 (2009).
[CrossRef]

Mikkelsen, O.

O. Mikkelsen, T. Milligan, and P. Hill, “The influence of schlieren on in situ optical measurements used for particle characterization,” Limnol. Oceanogr. 6, 133–143 (2008).

Milligan, T.

O. Mikkelsen, T. Milligan, and P. Hill, “The influence of schlieren on in situ optical measurements used for particle characterization,” Limnol. Oceanogr. 6, 133–143 (2008).

Milligan, T. G.

K. J. Curran, P. S. Hill, and T. G. Milligan, “Fine-grained suspended sediment dynamics in the Eel River flood plume,” Cont. Shelf Res. 22, 2537–2550 (2002).
[CrossRef]

Moore, C.

J. M. Sullivan, M. Twardowski, J. R. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. A. Kokhanovsky, ed. (Springer, 2013), pp. 189–224.

Morel, A.

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Moroz, B. Z.

K. S. Shifrin, B. Z. Moroz, and A. N. Sakharov, “Determination of characteristics of a dispersion medium based on its transparency data,” Dokl. Akad. Nauk SSSR 199, 589–591 (1971).

Nicolas, J. M.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Pegau, W. S.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Perry, M. J.

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

Poteau, A.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Rehm, E.

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

Reynolds, R. A.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, 1–19 (2010).
[CrossRef]

Richardson, M. J.

W. D. Gardner, M. J. Richardson, and W. O. Smith, “Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica,” Deep Sea Res., Part II 47, 3423–3449 (2000).

Russo, C.

Sakharov, A. N.

K. S. Shifrin, B. Z. Moroz, and A. N. Sakharov, “Determination of characteristics of a dispersion medium based on its transparency data,” Dokl. Akad. Nauk SSSR 199, 589–591 (1971).

Sciandra, A.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Shifrin, K. S.

K. S. Shifrin, B. Z. Moroz, and A. N. Sakharov, “Determination of characteristics of a dispersion medium based on its transparency data,” Dokl. Akad. Nauk SSSR 199, 589–591 (1971).

K. S. Shifrin, “The method of fluctuations,” in Physical Optics of Ocean Water (American Institute of Physics, 1988), pp. 224–232.

Shybanov, E.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

Siegel, D. A.

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114, C09015 (2009).
[CrossRef]

Silver, M. W.

A. L. Alldredge and M. W. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[CrossRef]

Slade, W.

Slade, W. H.

Smetacek, V. S.

V. S. Smetacek, “Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance,” Mar. Biol. 84, 239–251 (1985).
[CrossRef]

Smith, W. O.

V. L. Asper and W. O. Smith, “Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica,” Deep Sea Res., Part I 50, 131–150 (2003).

W. D. Gardner, M. J. Richardson, and W. O. Smith, “Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica,” Deep Sea Res., Part II 47, 3423–3449 (2000).

Stramski, D.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, 1–19 (2010).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Sullivan, J. M.

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

J. M. Sullivan, M. Twardowski, J. R. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. A. Kokhanovsky, ed. (Springer, 2013), pp. 189–224.

Twardowski, M.

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

J. M. Sullivan, M. Twardowski, J. R. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. A. Kokhanovsky, ed. (Springer, 2013), pp. 189–224.

Twardowski, M. S.

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, “Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution,” Appl. Opt. 40, 4885–4893 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

van Kesteren, W. G. M.

J. C. Winterwerp and W. G. M. van Kesteren, Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment (Elsevier, 2004).

Warr, K. J.

S. Jennings and K. J. Warr, “Smaller predator-prey body size ratios in longer food chains,” Proc. R. Soc. B 270, 1413–1417 (2003).
[CrossRef]

Westberry, T. K.

Williams, A. J.

G. C. Chang, T. D. Dickey, and A. J. Williams, “Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense,” J. Geophys. Res. 106, 9517–9531 (2001).
[CrossRef]

Winterwerp, J. C.

J. C. Winterwerp and W. G. M. van Kesteren, Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment (Elsevier, 2004).

Wood, T. J.

J. K. B. Bishop and T. J. Wood, “Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites,” Deep Sea Res., Part I 55, 1684–1706 (2008).

Wozniak, S. B.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, 1–19 (2010).
[CrossRef]

Wright, V. M.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, 1–19 (2010).
[CrossRef]

Zaneveld, J. R.

J. M. Sullivan, M. Twardowski, J. R. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. A. Kokhanovsky, ed. (Springer, 2013), pp. 189–224.

Zaneveld, J. R. V.

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

Appl. Opt. (2)

Biogeosciences (1)

G. Fischer and G. Karakas, “Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean,” Biogeosciences 6, 85–102 (2009).

Cont. Shelf Res. (1)

K. J. Curran, P. S. Hill, and T. G. Milligan, “Fine-grained suspended sediment dynamics in the Eel River flood plume,” Cont. Shelf Res. 22, 2537–2550 (2002).
[CrossRef]

Deep Sea Res., Part I (4)

J. K. B. Bishop and T. J. Wood, “Particulate matter chemistry and dynamics in the twilight zone at VERTIGO ALOHA and K2 sites,” Deep Sea Res., Part I 55, 1684–1706 (2008).

N. Briggs, M. J. Perry, I. Cetinić, C. Lee, E. D’Asaro, A. M. Gray, and E. Rehm, “High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom,” Deep Sea Res., Part I 58, 1031–1039 (2011).

V. L. Asper and W. O. Smith, “Abundance, distribution and sinking rates of aggregates in the Ross Sea, Antarctica,” Deep Sea Res., Part I 50, 131–150 (2003).

G. A. Jackson, “Effect of mixed layer depth on phytoplankton removal by coagulation and on the critical depth concept,” Deep Sea Res., Part I 55, 766–776 (2008).

Deep Sea Res., Part II (1)

W. D. Gardner, M. J. Richardson, and W. O. Smith, “Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica,” Deep Sea Res., Part II 47, 3423–3449 (2000).

Dokl. Akad. Nauk SSSR (1)

K. S. Shifrin, B. Z. Moroz, and A. N. Sakharov, “Determination of characteristics of a dispersion medium based on its transparency data,” Dokl. Akad. Nauk SSSR 199, 589–591 (1971).

Ecol. Monogr. (1)

L. Dickie, S. Kerr, and P. Boudreau, “Size-dependent processes underlying regularities in ecosystem structure,” Ecol. Monogr. 57, 233–250 (1987).
[CrossRef]

J. Geophys. Res. (6)

G. C. Chang, T. D. Dickey, and A. J. Williams, “Sediment resuspension over a continental shelf during Hurricanes Edouard and Hortense,” J. Geophys. Res. 106, 9517–9531 (2001).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, “Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution,” J. Geophys. Res. 109, C01014 (2004).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, “A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters,” J. Geophys. Res. 106, 14129–14142 (2001).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, and S. Maritorena, “Retrieval of the particle size distribution from satellite ocean color observations,” J. Geophys. Res. 114, C09015 (2009).
[CrossRef]

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, 1–19 (2010).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

J. Mar. Res. (1)

M. J. Behrenfeld and E. Boss, “Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass,” J. Mar. Res. 64, 431–451 (2006).
[CrossRef]

Limnol. Oceanogr. (2)

O. Mikkelsen, T. Milligan, and P. Hill, “The influence of schlieren on in situ optical measurements used for particle characterization,” Limnol. Oceanogr. 6, 133–143 (2008).

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, “Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration,” Limnol. Oceanogr. 48, 843–859 (2003).
[CrossRef]

Mar. Biol. (1)

V. S. Smetacek, “Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance,” Mar. Biol. 84, 239–251 (1985).
[CrossRef]

Oceanogr. Mar. Biol. (1)

W. Clavano, E. Boss, and L. Karp-Boss, “Inherent optical properties of non-spherical marine-like particles—from theory to observation,” Oceanogr. Mar. Biol. 45, 1–38 (2007).
[CrossRef]

Opt. Express (3)

Proc. R. Soc. B (1)

S. Jennings and K. J. Warr, “Smaller predator-prey body size ratios in longer food chains,” Proc. R. Soc. B 270, 1413–1417 (2003).
[CrossRef]

Prog. Oceanogr. (1)

A. L. Alldredge and M. W. Silver, “Characteristics, dynamics and significance of marine snow,” Prog. Oceanogr. 20, 41–82 (1988).
[CrossRef]

Water Resour. Res. (1)

W. Dietrich, “Settling velocity of natural particles,” Water Resour. Res. 18, 1615–1626 (1982).
[CrossRef]

Other (6)

J. C. Winterwerp and W. G. M. van Kesteren, Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment (Elsevier, 2004).

J. R. Gray and J. W. Gartner, “Technological advances in suspended-sediment surrogate monitoring,” Water Resour. Res.45 (2009).
[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

K. S. Shifrin, “The method of fluctuations,” in Physical Optics of Ocean Water (American Institute of Physics, 1988), pp. 224–232.

J. M. Sullivan, M. Twardowski, J. R. Zaneveld, and C. Moore, “Measuring optical backscattering in water,” in Light Scattering Reviews 7, A. A. Kokhanovsky, ed. (Springer, 2013), pp. 189–224.

J. E. Freund, Mathematical Statistics, 2nd ed. (Prentice-Hall, 1971), pp. 212–216.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Time series of unbinned optical data during Exp. 2: D¯LISST (green), cp from ac-9 (black), and LISST (red), and bbp (blue). Dashed gray line at 1.6 h divides the “aggregation period” from the “settling period”.

Fig. 2.
Fig. 2.

Calculation of mean and variance of cp from the ac-9 (Exp. 2). (a) Raw unbinned cp time series (blue) and detrending filter (red). (b) Means calculated from raw time series in 3 min bins. (c) Detrended time series (blue), with outlier threshold (green) and outliers (red circles). (d) Variances calculated from detrended time series in 3 min bins. Dashed gray line at 1.6 h divides the “aggregation” and “settling” periods in all panels.

Fig. 3.
Fig. 3.

Time series of direct estimates of Qc from ac-9 cp (panel a; light colors), Qc from LISST cp (panel a; dark colors) and Qbb (panel b) from Exps. 1 (blue) and 2 (red). Horizontal black lines show the literature values of Q used in this study. Dashed gray lines mark the transition from the aggregation period to the rapid settling period.

Fig. 4.
Fig. 4.

Time series of D¯LISST (green), D¯bbp (blue), D¯cp_ac9 (black), and D¯cp_LISST (red) during Exp. 2. Literature values of Qbb and Qc were used to calculate D¯bbp and D¯cp. Solid gray line marks the start of the validation period. Dashed gray line marks the end of the validation period and the start of the settling period.

Fig. 5.
Fig. 5.

(a) log10(D¯LISST) versus log10(D¯cp_ac9) (a), (b) log10(D¯cp_LISST) (b), and (c) log10(D¯bbp) (from Exps. 1 (blue) and 2 (red). Literature values of Qbbp and Qc were used to calculate D¯bbp and D¯cp. Solid lines are type-I linear regressions of log-transformed data. Pale data points, from outside the validation period, are excluded from the regressions. Slopes (±95% conf.) and r2 values of are given in the Table 3, along with the mean biases (±95% conf.).

Fig. 6.
Fig. 6.

Spectral slope γDcp of D¯cp(λ) over the course of Exps. 1 (blue) and 2 (red). Empirical estimates of Q were used at each wavelength to calculate D¯cp. Horizontal dashed line denotes no spectral dependence, and vertical gray line indicates the start of the validation period.

Fig. 7.
Fig. 7.

(a) Relationships between Rcp_ac9 and D¯cp_ac9 (black), D¯bbp (blue), or D¯LISST (green). (b) Relationships between Rcp_ac9 and spectral slopes of cp (black) and bbp (blue). Data points in both panels are 9 min bin averages from the validation period (+) and settling period (o) of Exp. 2. Solid lines show type I linear regressions of Rcp_ac9 against settling period D¯cp_ac9 (r2=0.93), D¯bbp (r2=0.75), D¯LISST (r2=0.63), cp spectral slope (r2=0.01), and bbp spectral slope (r2=0.07). Regressions in panel (a) are all highly significant (p<0.01), whereas regressions in panel (b) are not (p>0.4). Empirical estimates of Qcp and Qbbp were used to calculate D¯cp_ac9 and D¯bbp.

Fig. 8.
Fig. 8.

Bias in D¯cp relative to the D¯LISST (blue x’s) is not significantly correlated with attenuance C (type I linear regression: y=0.02±0.04x+1.12±0.06; r2=0.01). Relative bias in D¯Shifrin (red o’s) decreases as a function of C (type I linear regression: y=0.15±0.03x+1.12±0.05; r2=0.21). Data from the validation period of both experiments at all ac-9 wavelengths are included. Empirical estimates of Qcp and Qbb were used at each wavelength to calculate both D¯cp and D¯Shifrin.

Tables (4)

Tables Icon

Table 1. Table of Terms

Tables Icon

Table 2. VMR Inversion Constant Input Parameters

Tables Icon

Table 3. VMR Performance During Validation Period (t=0.751.6h)

Tables Icon

Table 4. Table of Additional Terms in Appendix

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

A¯=iE[Ni(t)]Ai2iE[Ni(t)]Ai,
A¯cp=Var[cp(t)]E[cp(t)]VQc1α(τ),
α(τ)={1(3τ)1ifτ1ττ23ifτ1,
τ=(trestsamp),
D¯=2A¯π1.
Qc=E[cp(t)]iE[Ni(t)]AiV1.
Std[VMR]E[VMR]=2nVMR1.
autocorr(Δt)=t=1nLcp(t)*cp(t+Δt)t=1nLcp(t)2.
Rcp=1cpdcpdt1cpcp(t3min)cp(t+3min)6min.
A¯Shifrin=E[C(t)]Var[T(t)]ϕ(E[C(t)])SQc,
ϕ(C)=2Ce2C0π[exp(C(ψsinψ)π)1]sinψdψ.
cp,i(t)=Ni(t)σc,iV.
cp(t)=icp,i(t)=1ViNi(t)σc,i.
E[cp(t)]=E[1ViNi(t)σc,i]=1ViE[Ni(t)]σc,i.
Var[cp(t)]=Var[1ViNi(t)σc,i]=(1V)2iVar[Ni(t)]σc,i2.
Var[Ni(t)]=E[Ni(t)].
Var[cp(t)]E[cp(t)]=σ¯cV,
σ¯c=iE[Ni(t)]σc,i2iE[Ni(t)]σc,i.
Qc,i=σc,iAp,i.
σ¯c=Qc2QciE[Ni(t)]Ai2iE[Ni(t)]Ai=QcA¯,
A¯cp=Var[cp,i(t)]E[cp,i(t)]VQc.
A¯cp*=Var[cp,i(t)]E[cp,i(t)]VQc*,
VGε(x,y,z)dxdydz=1.
σc,i(x,y,z)=σc,iε(x,y,z)VG.
Var[cp(t)]E[cp(t)]=σc(x,y,z)¯VG,
σc(x,y,z)¯=iE[Ni(t)]VGσc,i2(x,y,z)dxdydziE[Ni(t)]VGσc,i(x,y,z)dxdydz.
σc(x,y,z)¯=iE[Ni(t)]VGσc,i2ε2(x,y,z)VG2dxdydziE[Ni(t)]VGσc,iε(x,y,z)VGdxdydz=VGiE[Ni(t)]σc,i2VGε2(x,y,z)dxdydziE[Ni(t)]σc,iVGε(x,y,z)dxdydz=VGiE[Ni(t)]σc,i2VGε2(x,y,z)dxdydziE[Ni(t)]σc,i=σ¯VGVGε2(x,y,z)dxdydz.
Var[cp(t)]E[cp(t)]=σ¯cVGε2(x,y,z)dxdydz.
V=(VGε2(x,y,z)dxdydz)1,
εLISST(r)=exp(2r2w2)VGexp(2r2w2)dxdydz,
εECOBB(x,y,z)=Pd(x,y,z)ΔVxyzPd(x,y,z),
Vt=(Ayz0Ltε2(x)dx)1,
ε(x)=1Ayzt(x)0Ltt(x)dx,
α=VVt=AyzLV(Ayz0Ltε2(x)dx)1=LV0LV+Lsampt2(x)dx(0LV+Lsampt(x)dx)2.
t(0xLV)=tresxLVt(LVxLsamp)=trest(LsampxLsamp+LV)=tres(Lsamp+LV+x)LV.
0LV+Lsampt(x)dx=tresLV2+tres(LsampLV)+tresLV2=tres(LV+LsampLV)=tresLsamp
0LV+Lsampt2(x)dx=tres2LV3+tres2(LsampLV)+tres2LV3=tres2(2LV3+LsampLV)=tres2(LsampLV3).
α=LVtres2(LsampLV3)tres2Lsamp2=LV(LsampLV3)Lsamp2=LVLsamp13(LVLsamp)2.
t(0xLsamp)=tsampxLS,t(LsampxLV)=tsamp,t(LVxLsamp+LV)=tsamp(Lsamp+LV+x)Lsamp.
α=113LsampLV.
τ=LVLsamp=trestsamp.
α(τ)={1(3τ)1,ifτ1ττ23,ifτ1.

Metrics