Abstract

This study involves the fabrication and characterization of improved quality silver (Ag)/polystyrene (PS) thin-film-coated hollow-glass waveguides for the low-loss transmission of terahertz radiation via modified dynamic liquid phase deposition techniques. High-quality PS thin films were deposited from aqueous PS solutions, and the spectral response of fabricated samples was measured from λ=1100μm. Fabricated samples exhibited highly defined spectral responses throughout this entire range indicative of PS films of excellent quality. The spectra of experimental samples were compared to the theoretical and bulk PS spectra in the near-IR and far-IR regions. The thickness of deposited PS thin films was found to depend on total sample length and to vary from approximately 10–16 μm for sample lengths ranging from 115 to 140 cm. Such PS film thicknesses are adequate for low-loss delivery from approximately 2–4 THz. Furthermore, film thickness was found to vary minimally along the waveguide length regardless of total sample length.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  2. D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).
  3. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef]
  4. H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in terahertz waveguides and sources,” IEEE Photon. J. 3, 307–310 (2011).
    [CrossRef]
  5. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [CrossRef]
  6. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
    [CrossRef]
  7. C. M. Bledt and J. A. Harrington, “Silver and silver/polystyrene coated hollow glass waveguides for the transmission of infrared radiation,” Proc. SPIE 8218, 821809 (2012).
  8. U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).
  9. M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
    [CrossRef]
  10. O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
    [CrossRef]
  11. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
  12. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
    [CrossRef]
  13. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
    [CrossRef]
  14. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef]
  15. C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
    [CrossRef]
  16. M. Miyagi and S. Kawakami, “Waveguide loss evaluation by the ray-optics method,” J. Opt. Soc. Am. 73, 486–489 (1983).
    [CrossRef]
  17. Y. Matsuura, M. Saito, and M. Miyagi, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  18. S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2010).

2012

C. M. Bledt and J. A. Harrington, “Silver and silver/polystyrene coated hollow glass waveguides for the transmission of infrared radiation,” Proc. SPIE 8218, 821809 (2012).

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

2011

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in terahertz waveguides and sources,” IEEE Photon. J. 3, 307–310 (2011).
[CrossRef]

2008

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

2007

2004

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

2000

1989

1984

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

1983

Alexander, R. W.

Beere, H. E.

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Beltram, F.

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Bledt, C. M.

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

C. M. Bledt and J. A. Harrington, “Silver and silver/polystyrene coated hollow glass waveguides for the transmission of infrared radiation,” Proc. SPIE 8218, 821809 (2012).

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Darcie, T. E.

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in terahertz waveguides and sources,” IEEE Photon. J. 3, 307–310 (2011).
[CrossRef]

Fernandez, F. A.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

Gallot, G.

Grischkowsky, D.

Harrington, J. A.

C. M. Bledt and J. A. Harrington, “Silver and silver/polystyrene coated hollow glass waveguides for the transmission of infrared radiation,” Proc. SPIE 8218, 821809 (2012).

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

C. M. Bledt, J. A. Harrington, and J. M. Kriesel, “Loss and modal properties of Ag/AgI hollow glass waveguides,” Appl. Opt. 51, 3114–3119 (2012).
[CrossRef]

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Heshmat, B.

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in terahertz waveguides and sources,” IEEE Photon. J. 3, 307–310 (2011).
[CrossRef]

James, R.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

Jamison, S. P.

Jen, A. K.-Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

M. Miyagi and S. Kawakami, “Waveguide loss evaluation by the ray-optics method,” J. Opt. Soc. Am. 73, 486–489 (1983).
[CrossRef]

Kriesel, J. M.

Long, L. L.

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Matsuura, Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

McGowan, R. W.

Mitrofanov, O.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
[CrossRef]

Mittleman, D.

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Miyagi, M.

Ordal, M. A.

Orfanidis, S. J.

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2010).

Pahlevaninezhad, H.

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in terahertz waveguides and sources,” IEEE Photon. J. 3, 307–310 (2011).
[CrossRef]

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Ritchie, D. A.

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Saito, M.

Siciliani de Cumis, U.

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

Tredicucci, A.

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Vitiello, M. S.

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Ward, C. A.

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Xu, J. H.

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

Xu, J.-H.

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

Zhou, X.-H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett. 93, 181104 (2008).
[CrossRef]

IEEE Photon. J.

H. Pahlevaninezhad, B. Heshmat, and T. E. Darcie, “Advances in terahertz waveguides and sources,” IEEE Photon. J. 3, 307–310 (2011).
[CrossRef]

IEEE Trans. Terahertz Sci. Technol.

O. Mitrofanov, R. James, F. A. Fernandez, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” IEEE Trans. Terahertz Sci. Technol. 1, 124–132 (2011).
[CrossRef]

J. Appl. Phys.

M. S. Vitiello, J. H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[CrossRef]

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011).
[CrossRef]

J. Infrared Millim. Terahertz Waves

U. Siciliani de Cumis, J.-H. Xu, C. M. Bledt, J. A. Harrington, A. Tredicucci, and M. S. Vitiello, “Flexible, low-loss waveguide designs for efficient coupling to quantum cascade lasers in the far-infrared,” J. Infrared Millim. Terahertz Waves 33, 319–326 (2012).

J. Lightwave Technol.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. 2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

C. M. Bledt and J. A. Harrington, “Silver and silver/polystyrene coated hollow glass waveguides for the transmission of infrared radiation,” Proc. SPIE 8218, 821809 (2012).

Other

D. Mittleman, Sensing with Terahertz Radiation (Springer, 2003).

S. J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University, 2010).

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross-sectional representation of metal/polystyrene-coated HGW.

Fig. 2.
Fig. 2.

Optimal PS film thickness as a function of frequency.

Fig. 3.
Fig. 3.

Schematic of modified DLPD configuration for deposition of PS dielectric thin films.

Fig. 4.
Fig. 4.

Experimental NIR spectral response of Ag/PS HW having a dielectric PS film thickness of 10.3 μm along with corresponding simulated spectrum and PS thin-film reference.

Fig. 5.
Fig. 5.

Comparison of experimental and calculated spectral response as a function of wavenumber in the NIR region showing interference fringes used for determining PS film thickness.

Fig. 6.
Fig. 6.

Experimental MIR spectral response of Ag/PS HW having a dielectric PS film thickness of 10.3 μm along with corresponding simulated spectrum and PS thin-film reference.

Fig. 7.
Fig. 7.

Experimental FIR spectral response of Ag/PS HW having a dielectric PS film thickness of 10.3 μm along with corresponding simulated spectrum and PS thin-film reference.

Fig. 8.
Fig. 8.

Experimental FIR spectral responses of Ag/PS HWs having dielectric PS film thicknesses of 10.3 μm PS (140 cm) and 15.9 μm (120 cm) 10.3 μm along with the PS thin-film reference spectrum.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α=(unm2π)2λ2a3(nmnm2+κm2)(12(1+nF2nF21)2),
do=λd2πnF21tan1(nF(nF21)14),
α=1R4acotφ,
d=(1Ni=2Nv˜Nv˜N1)14nF21,
dF=λc4nF21,
λ0=2πdFnF21[tan1(nF(nF21)14)]1,

Metrics