Abstract

The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550kWh/year in Sweden and 1160kWh/year in Dubai for one system of only 0.159m2 total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Parans Solar Lighting AB, www.parans.com/products ; Himawari Solar Fiber Optic Lighting Systems, http://www.himawari-net.co.jp/e_page-index01.html .
  2. D. Lingfors and T. Volotinen, “Illumination performance and energy saving of a solar fiber optic lighting system,” Opt. Express 21, A642–A655 (2013).
    [CrossRef]
  3. T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, and Ph. Kräuchi, “Solar fibre optic lights—daylight to office desks and corridors,” in Proceedings of the CISBAT11 Conference, Lausanne, Switzerland (2011), pp. 491–496.
  4. L. Edwards and P. Torcellini, “A literature review of the effects of natural light on building occupants,” (National Renewable Energy Laboratory, 2002).
  5. L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .
  6. A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
    [CrossRef]
  7. F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
    [CrossRef]
  8. M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: a review,” Lighting Res. Technol. 42, 51–71 (2010).
    [CrossRef]
  9. M. S. Mayhoub and D. J. Carter, “Hybrid lighting systems: performance and design,” Lighting Res. Technol. 44, 261–276 (2012).
    [CrossRef]
  10. Photocopy Edition 1996, “The measurement of luminous flux,” Technical report (CIE, 1996).
  11. 3rd edition, “Colorimetry,” Technical report (CIE, 2004).
  12. , “Method of measuring and specifying colour rendering properties of light sources,” Technical report (CIE, 1995).
  13. M.-C. Dubois and Å. Blomsterberg, “Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: a literature review,” Energy Build. 43, 2572–2582 (2011).
  14. Y. Yang and X. Shi, “Analysis and evaluation on luminaire efficacy and colour quality of LED downlights,” in Proceedings of CIE2012 Lighting Quality and Energy Efficiency Conference (CIE, 2012), pp. 546–554.
  15. http://www.lighting.philips.com/main/led/index.wpd and http://www.osram.com/osram_com/products/led-technology/indoor-led-luminaires/index.jsp .
  16. R. C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, 1986).
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), pp. 120–124.
  18. J. M. Senior, Optical Fiber Communications Principles and Practice (Prentice Hall, 1985), pp. 89–90.
  19. P. Bent, A. Rabl, H. W. Gaul, and K. A. Reed, “Optical analysis and optimization of line focus solar collectors,” (Solar Energy Research Institute, 1979).
  20. W. L. Wolfe, Handbook of Military Infrared Technology (U.S. Government Printing Office, 1965), pp. 454–455.
  21. M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995), Vol. 1.
  22. D. Lingfors, “Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights,” M.Sc. thesis for the engineering program in Energy Systems (Uppsala University, Department of Engineering Sciences, 2012).
  23. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
    [CrossRef]
  24. P. Nostell, A. Roos, and D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
    [CrossRef]
  25. D. Marcuse, Principles of Optical Fiber Measurements (Academic, 1981), pp. 226–236 and 244–253.
  26. T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fiber,” Rev. ECL 32, 478 (1984).
  27. Swedish Meteorological and Hydrological Institute (SMHI). http://www.smhi.se/klimatdata/meteorologi/stralning/normal-solskenstid-for-ett-ar-1.3052 (2011).
  28. NCEP reanalysis data for Dubai, the NOAA-CIRES Climate Diagnostics Center (2000).

2013 (1)

2012 (1)

M. S. Mayhoub and D. J. Carter, “Hybrid lighting systems: performance and design,” Lighting Res. Technol. 44, 261–276 (2012).
[CrossRef]

2011 (1)

M.-C. Dubois and Å. Blomsterberg, “Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: a literature review,” Energy Build. 43, 2572–2582 (2011).

2010 (1)

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: a review,” Lighting Res. Technol. 42, 51–71 (2010).
[CrossRef]

2006 (1)

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
[CrossRef]

2005 (1)

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

1999 (1)

P. Nostell, A. Roos, and D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

1992 (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
[CrossRef]

1984 (1)

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fiber,” Rev. ECL 32, 478 (1984).

Bass, M.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995), Vol. 1.

Bent, P.

P. Bent, A. Rabl, H. W. Gaul, and K. A. Reed, “Optical analysis and optimization of line focus solar collectors,” (Solar Energy Research Institute, 1979).

Blomsterberg, Å.

M.-C. Dubois and Å. Blomsterberg, “Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: a literature review,” Energy Build. 43, 2572–2582 (2011).

Boudreaux, P.

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .

Bunch, T.

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .

Carter, D. J.

M. S. Mayhoub and D. J. Carter, “Hybrid lighting systems: performance and design,” Lighting Res. Technol. 44, 261–276 (2012).
[CrossRef]

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: a review,” Lighting Res. Technol. 42, 51–71 (2010).
[CrossRef]

Doulos, L.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Dubois, M.-C.

M.-C. Dubois and Å. Blomsterberg, “Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: a literature review,” Energy Build. 43, 2572–2582 (2011).

Earl, D. D.

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .

Edwards, L.

L. Edwards and P. Torcellini, “A literature review of the effects of natural light on building occupants,” (National Renewable Energy Laboratory, 2002).

Fontani, D.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
[CrossRef]

Fontoynont, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Francini, F.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
[CrossRef]

Fujiki, M.

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fiber,” Rev. ECL 32, 478 (1984).

Gaul, H. W.

P. Bent, A. Rabl, H. W. Gaul, and K. A. Reed, “Optical analysis and optimization of line focus solar collectors,” (Solar Energy Research Institute, 1979).

Jacobs, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Jafrancesco, D.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
[CrossRef]

Jinguji, K.

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fiber,” Rev. ECL 32, 478 (1984).

Johansson, D.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, and Ph. Kräuchi, “Solar fibre optic lights—daylight to office desks and corridors,” in Proceedings of the CISBAT11 Conference, Lausanne, Switzerland (2011), pp. 491–496.

Kaino, T.

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fiber,” Rev. ECL 32, 478 (1984).

Kräuchi, Ph.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, and Ph. Kräuchi, “Solar fibre optic lights—daylight to office desks and corridors,” in Proceedings of the CISBAT11 Conference, Lausanne, Switzerland (2011), pp. 491–496.

Lapsa, M. V.

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .

Lingfors, D.

D. Lingfors and T. Volotinen, “Illumination performance and energy saving of a solar fiber optic lighting system,” Opt. Express 21, A642–A655 (2013).
[CrossRef]

D. Lingfors, “Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights,” M.Sc. thesis for the engineering program in Energy Systems (Uppsala University, Department of Engineering Sciences, 2012).

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), pp. 120–124.

Maamari, F.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Marcuse, D.

D. Marcuse, Principles of Optical Fiber Measurements (Academic, 1981), pp. 226–236 and 244–253.

Maxey, L. C.

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .

Mayhoub, M. S.

M. S. Mayhoub and D. J. Carter, “Hybrid lighting systems: performance and design,” Lighting Res. Technol. 44, 261–276 (2012).
[CrossRef]

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: a review,” Lighting Res. Technol. 42, 51–71 (2010).
[CrossRef]

McCamy, C. S.

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
[CrossRef]

Mercatelli, L.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
[CrossRef]

Mihalakakou, G.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Morris, J.

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .

Nilsson, N.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, and Ph. Kräuchi, “Solar fibre optic lights—daylight to office desks and corridors,” in Proceedings of the CISBAT11 Conference, Lausanne, Switzerland (2011), pp. 491–496.

Nostell, P.

P. Nostell, A. Roos, and D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Pohl, W.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Rabl, A.

P. Bent, A. Rabl, H. W. Gaul, and K. A. Reed, “Optical analysis and optimization of line focus solar collectors,” (Solar Energy Research Institute, 1979).

Reed, K. A.

P. Bent, A. Rabl, H. W. Gaul, and K. A. Reed, “Optical analysis and optimization of line focus solar collectors,” (Solar Energy Research Institute, 1979).

Rönnow, D.

P. Nostell, A. Roos, and D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Roos, A.

P. Nostell, A. Roos, and D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Sansoni, P.

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
[CrossRef]

Santamouris, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Senior, J. M.

J. M. Senior, Optical Fiber Communications Principles and Practice (Prentice Hall, 1985), pp. 89–90.

Shi, X.

Y. Yang and X. Shi, “Analysis and evaluation on luminaire efficacy and colour quality of LED downlights,” in Proceedings of CIE2012 Lighting Quality and Energy Efficiency Conference (CIE, 2012), pp. 546–554.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), pp. 120–124.

Solomon, J.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Torcellini, P.

L. Edwards and P. Torcellini, “A literature review of the effects of natural light on building occupants,” (National Renewable Energy Laboratory, 2002).

Tsangrassoulis, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Van Stryland, E. W.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995), Vol. 1.

Volotinen, T.

Volotinen, T. T.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, and Ph. Kräuchi, “Solar fibre optic lights—daylight to office desks and corridors,” in Proceedings of the CISBAT11 Conference, Lausanne, Switzerland (2011), pp. 491–496.

Weast, R. C.

R. C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, 1986).

Widen, J.

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, and Ph. Kräuchi, “Solar fibre optic lights—daylight to office desks and corridors,” in Proceedings of the CISBAT11 Conference, Lausanne, Switzerland (2011), pp. 491–496.

Williams, D. R.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995), Vol. 1.

Wilson, M.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Wolfe, W. L.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995), Vol. 1.

W. L. Wolfe, Handbook of Military Infrared Technology (U.S. Government Printing Office, 1965), pp. 454–455.

Yang, Y.

Y. Yang and X. Shi, “Analysis and evaluation on luminaire efficacy and colour quality of LED downlights,” in Proceedings of CIE2012 Lighting Quality and Energy Efficiency Conference (CIE, 2012), pp. 546–554.

Zimmerman, A.

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Color Res. Appl. (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992).
[CrossRef]

Energy Build. (1)

M.-C. Dubois and Å. Blomsterberg, “Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: a literature review,” Energy Build. 43, 2572–2582 (2011).

Lighting Res. Technol. (2)

M. S. Mayhoub and D. J. Carter, “Towards hybrid lighting systems: a review,” Lighting Res. Technol. 42, 51–71 (2010).
[CrossRef]

M. S. Mayhoub and D. J. Carter, “Hybrid lighting systems: performance and design,” Lighting Res. Technol. 44, 261–276 (2012).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

F. Francini, D. Fontani, D. Jafrancesco, L. Mercatelli, and P. Sansoni, “Solar internal lighting using optical collectors and fibres,” Proc. SPIE 6338, 63380O (2006).
[CrossRef]

Rev. ECL (1)

T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fiber,” Rev. ECL 32, 478 (1984).

Rev. Sci. Instrum. (1)

P. Nostell, A. Roos, and D. Rönnow, “Single-beam integrating sphere spectrophotometer for reflectance and transmittance measurements versus angle of incidence in the solar wavelength range on diffuse and specular samples,” Rev. Sci. Instrum. 70, 2481–2494 (1999).
[CrossRef]

Sol. Energy (1)

A. Tsangrassoulis, L. Doulos, M. Santamouris, M. Fontoynont, F. Maamari, M. Wilson, A. Jacobs, J. Solomon, A. Zimmerman, W. Pohl, and G. Mihalakakou, “On the energy efficiency of a prototype hybrid daylighting system,” Sol. Energy 79, 56–64 (2005).
[CrossRef]

Other (19)

T. T. Volotinen, N. Nilsson, D. Johansson, J. Widen, and Ph. Kräuchi, “Solar fibre optic lights—daylight to office desks and corridors,” in Proceedings of the CISBAT11 Conference, Lausanne, Switzerland (2011), pp. 491–496.

L. Edwards and P. Torcellini, “A literature review of the effects of natural light on building occupants,” (National Renewable Energy Laboratory, 2002).

L. C. Maxey, M. V. Lapsa, P. Boudreaux, D. D. Earl, J. Morris, and T. Bunch, “Hybrid solar lighting: Final technical report and results of the field trial program,” U.S. Department of Energy (DOE) Information Bridge (2008), http://www.osti.gov/bridge , .

Photocopy Edition 1996, “The measurement of luminous flux,” Technical report (CIE, 1996).

3rd edition, “Colorimetry,” Technical report (CIE, 2004).

, “Method of measuring and specifying colour rendering properties of light sources,” Technical report (CIE, 1995).

Y. Yang and X. Shi, “Analysis and evaluation on luminaire efficacy and colour quality of LED downlights,” in Proceedings of CIE2012 Lighting Quality and Energy Efficiency Conference (CIE, 2012), pp. 546–554.

http://www.lighting.philips.com/main/led/index.wpd and http://www.osram.com/osram_com/products/led-technology/indoor-led-luminaires/index.jsp .

R. C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, 1986).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983), pp. 120–124.

J. M. Senior, Optical Fiber Communications Principles and Practice (Prentice Hall, 1985), pp. 89–90.

P. Bent, A. Rabl, H. W. Gaul, and K. A. Reed, “Optical analysis and optimization of line focus solar collectors,” (Solar Energy Research Institute, 1979).

W. L. Wolfe, Handbook of Military Infrared Technology (U.S. Government Printing Office, 1965), pp. 454–455.

M. Bass, E. W. Van Stryland, D. R. Williams, and W. L. Wolfe, Handbook of Optics (McGraw-Hill, 1995), Vol. 1.

D. Lingfors, “Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights,” M.Sc. thesis for the engineering program in Energy Systems (Uppsala University, Department of Engineering Sciences, 2012).

D. Marcuse, Principles of Optical Fiber Measurements (Academic, 1981), pp. 226–236 and 244–253.

Swedish Meteorological and Hydrological Institute (SMHI). http://www.smhi.se/klimatdata/meteorologi/stralning/normal-solskenstid-for-ett-ar-1.3052 (2011).

NCEP reanalysis data for Dubai, the NOAA-CIRES Climate Diagnostics Center (2000).

Parans Solar Lighting AB, www.parans.com/products ; Himawari Solar Fiber Optic Lighting Systems, http://www.himawari-net.co.jp/e_page-index01.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematics of the CMIS. The diameter of the sphere is 15 cm.

Fig. 2.
Fig. 2.

Normalized output intensity as the function of the angle for a 20 m long seven-fiber bundle of the 600 μm glass fibers are shown for the measurements with different launching NA. Microscope objectives with NA 0.1–0.85 were used for the launching.

Fig. 3.
Fig. 3.

(a) Attenuation spectra of the glass and plastic fibers measured with the cut-back method and shown on a logarithmic attenuation scale. (b) Corresponding transmittances are shown as a function of fiber length at the wavelengths 450, 550, and 650 nm, calculated from the data in Fig. 3(a).

Fig. 4.
Fig. 4.

Measured and fitted focal spot distributions for the lenses A and B.

Fig. 5.
Fig. 5.

(a) Estimated normalized coupling efficiencies and (b) accounted absolute in-coupled intensities for the two lenses. The circled data points are for the 7-fiber bundles of the 600 μm fibers.

Fig. 6.
Fig. 6.

Illuminances, i.e., the nadir output intensities of sunlight, are shown for several 20 and 100 m long single glass fibers (open markers) of core thicknesses 1000 μm and for the 20 and 100 m long glass fiber bundles (gray makers) of seven 600 μm core fibers, measured at 1 m distance from the output end of the fiber with the two lenses A and B. The corresponding output luminous fluxes in lumens can be estimated by multiplying the illuminance values by the factor 0.26.

Fig. 7.
Fig. 7.

Illumination in the test offices: (a) Room 4410 illuminated with the standard fluorescent lights and windows, (b) Room 4411 illuminated with the 20 m long plastic fiber solar lights and windows, and (c) Room 4412 illuminated with the glass fiber solar lights, dimmed fluorescent lights and windows.

Fig. 8.
Fig. 8.

(a) Graphs show the spectrum of the solar light in the centers of the focal spots for the lenses. (b) The graph shows the output spectra for the solar light after 20 m of the plastic fibers and glass fibers, for the fluorescent lights used in the offices and for the direct sunlight outside.

Fig. 9.
Fig. 9.

Annual energy consumption for offices illuminated by fluorescent lights, and with a combination of the solar fiber optic lights and fluorescent lights in Stockholm and Dubai. The present plastic fiber system is the SP3 solar light system from Parans.

Tables (1)

Tables Icon

Table 1. Correlated Color Temperatures and Color rendering Index, Calculated According to CIE Standards [11,12,23] for Spectra Shown in Figs. 8(a) and 8(b), at 20 m Fiber Length

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

NAfiber=sinθf=n22n12,
NAlens=sinθl=arctan(r/f)=arctan(no/2f),

Metrics