Abstract

In this paper, the emission of visible light by a monolithically integrated silicon pn junction under reverse-bias is discussed. The modulation of light intensity is achieved using an insulated-gate terminal on the surface of the pn junction. By varying the gate voltage, the breakdown voltage of the pn junction will be adjustable so that the reverse current Isub flowing through the pn junction at a fixed reverse-bias voltage is changed. It is observed that the light, which is emitted from the defects located at the pn junction, depends closely on the reverse current Isub. In regard to the phenomenon of electroluminescence, the relationship between the optical emission power and the reverse current Isub is linear. On the other hand, it is observed that both the quantum efficiency and the power conversion efficiency are able to have obvious enhancement, although the reverse-bias of the pn junction is reduced and the corresponding reverse-current is much lower. Moreover, the successful fabrication on monolithic silicon light source on the bulk silicon by means of standard silicon complementary metal–oxide–semiconductor process technology is presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100, 700–703 (1955).
    [CrossRef]
  2. L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
    [CrossRef]
  3. L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
    [CrossRef]
  4. L. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20, 614–617 (1999).
    [CrossRef]
  5. H.-C. Lee and C.-K. Liu, “Si-based current-density-enhanced light emission and low-operating-voltage light-emitting/receiving designs,” Solid-State Electron. 49, 1172–1178 (2005).
    [CrossRef]
  6. K. Xu and G. Li, “A three terminal silicon-PMOSFET like light emitting device (LED) for optical intensity modulation,” IEEE Photon. J. 4, 2159–2168 (2012).
    [CrossRef]
  7. K. Xu and G. Li, “A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology,” J. Appl. Phys. 113, 103106 (2013).
    [CrossRef]
  8. K. Xu and G. Li, “Insulated-gate field effect transistor (IGFET) silicon-LED with monolithic integration into silicon CMOS ICs,” IEEE Trans. Electron Devices (to be published).
  9. A. Grove, O. Leistiko, and W. Hooper, “Effect of channel surface fields on the breakdown voltage of planar silicon p-n junctions,” IEEE Trans. Electron Devices 14, 157–162 (1967).
    [CrossRef]
  10. A. Grove and D. Fitzgerald, “The origin of channel currents associated with p+ regions in silicon,” IEEE Trans. Electron Devices 12, 619–626 (1965).
    [CrossRef]
  11. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), p. 13.
  12. K. Hublitz and S. A. Lyon, “Light emission from hot carriers in silicon MOSFETs,” Semicond. Sci. Technol. 7, B567–B569 (1992).
    [CrossRef]
  13. C. Fortmann, A. Wierling, and G. Ropke, “Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasma,” Phys. Rev. E 81, 026405 (2010).
    [CrossRef]
  14. E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
    [CrossRef]
  15. B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
    [CrossRef]
  16. M. Fischetti, S. Laux, and D. Dimaria, “The physics of hot-electron degradation of Si MOSFET’s: can we understand it?” Appl. Surf. Sci. 39, 578–596 (1989).
    [CrossRef]
  17. H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, “Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout,” IEEE J. Sel. Top. Quantum Electron. 13, 959–966 (2007).
    [CrossRef]
  18. M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
    [CrossRef]
  19. S. Yamada and M. Kitao, “Recombination radiation as possible mechanism of light-emission from reverse-biased p-n junctions under breakdown condition,” Jpn. J. Appl. Phys. 32, 4555–4559 (1993).
    [CrossRef]
  20. P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.
  21. M. Tyagi, “Zener and avalanche breakdown in silicon alloyed p-n junctions,” Solid State Electron. 11, 577–582 (1968).
    [CrossRef]
  22. S. M. Sze, Semiconductor Sensors (Wiley, 1994), p. 277.

2013

K. Xu and G. Li, “A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology,” J. Appl. Phys. 113, 103106 (2013).
[CrossRef]

2012

K. Xu and G. Li, “A three terminal silicon-PMOSFET like light emitting device (LED) for optical intensity modulation,” IEEE Photon. J. 4, 2159–2168 (2012).
[CrossRef]

2010

C. Fortmann, A. Wierling, and G. Ropke, “Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasma,” Phys. Rev. E 81, 026405 (2010).
[CrossRef]

2007

H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, “Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout,” IEEE J. Sel. Top. Quantum Electron. 13, 959–966 (2007).
[CrossRef]

2006

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

2005

H.-C. Lee and C.-K. Liu, “Si-based current-density-enhanced light emission and low-operating-voltage light-emitting/receiving designs,” Solid-State Electron. 49, 1172–1178 (2005).
[CrossRef]

2002

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

1999

L. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20, 614–617 (1999).
[CrossRef]

1998

L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
[CrossRef]

1993

S. Yamada and M. Kitao, “Recombination radiation as possible mechanism of light-emission from reverse-biased p-n junctions under breakdown condition,” Jpn. J. Appl. Phys. 32, 4555–4559 (1993).
[CrossRef]

1992

K. Hublitz and S. A. Lyon, “Light emission from hot carriers in silicon MOSFETs,” Semicond. Sci. Technol. 7, B567–B569 (1992).
[CrossRef]

1991

M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
[CrossRef]

1989

M. Fischetti, S. Laux, and D. Dimaria, “The physics of hot-electron degradation of Si MOSFET’s: can we understand it?” Appl. Surf. Sci. 39, 578–596 (1989).
[CrossRef]

1968

M. Tyagi, “Zener and avalanche breakdown in silicon alloyed p-n junctions,” Solid State Electron. 11, 577–582 (1968).
[CrossRef]

1967

A. Grove, O. Leistiko, and W. Hooper, “Effect of channel surface fields on the breakdown voltage of planar silicon p-n junctions,” IEEE Trans. Electron Devices 14, 157–162 (1967).
[CrossRef]

1966

B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
[CrossRef]

1965

A. Grove and D. Fitzgerald, “The origin of channel currents associated with p+ regions in silicon,” IEEE Trans. Electron Devices 12, 619–626 (1965).
[CrossRef]

1955

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100, 700–703 (1955).
[CrossRef]

Acovic, A.

L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
[CrossRef]

Aharoni, H.

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

L. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20, 614–617 (1999).
[CrossRef]

Altukhov, A.

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Bellutti, P.

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Betta, G.

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Biber, A.

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

Dimaria, D.

M. Fischetti, S. Laux, and D. Dimaria, “The physics of hot-electron degradation of Si MOSFET’s: can we understand it?” Appl. Surf. Sci. 39, 578–596 (1989).
[CrossRef]

du Plessis, M.

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

L. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20, 614–617 (1999).
[CrossRef]

Esener, S.

H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, “Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout,” IEEE J. Sel. Top. Quantum Electron. 13, 959–966 (2007).
[CrossRef]

Esipov, L.

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Fiegna, C.

M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
[CrossRef]

Finkelstein, H.

H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, “Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout,” IEEE J. Sel. Top. Quantum Electron. 13, 959–966 (2007).
[CrossRef]

Fischetti, M.

M. Fischetti, S. Laux, and D. Dimaria, “The physics of hot-electron degradation of Si MOSFET’s: can we understand it?” Appl. Surf. Sci. 39, 578–596 (1989).
[CrossRef]

Fitzgerald, D.

A. Grove and D. Fitzgerald, “The origin of channel currents associated with p+ regions in silicon,” IEEE Trans. Electron Devices 12, 619–626 (1965).
[CrossRef]

Fortmann, C.

C. Fortmann, A. Wierling, and G. Ropke, “Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasma,” Phys. Rev. E 81, 026405 (2010).
[CrossRef]

Funfer, E.

B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
[CrossRef]

Glock, E.

B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
[CrossRef]

Gross, M.

H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, “Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout,” IEEE J. Sel. Top. Quantum Electron. 13, 959–966 (2007).
[CrossRef]

Grove, A.

A. Grove, O. Leistiko, and W. Hooper, “Effect of channel surface fields on the breakdown voltage of planar silicon p-n junctions,” IEEE Trans. Electron Devices 14, 157–162 (1967).
[CrossRef]

A. Grove and D. Fitzgerald, “The origin of channel currents associated with p+ regions in silicon,” IEEE Trans. Electron Devices 12, 619–626 (1965).
[CrossRef]

Gurchenko, A.

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Gusakov, E.

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Hooper, W.

A. Grove, O. Leistiko, and W. Hooper, “Effect of channel surface fields on the breakdown voltage of planar silicon p-n junctions,” IEEE Trans. Electron Devices 14, 157–162 (1967).
[CrossRef]

Hublitz, K.

K. Hublitz and S. A. Lyon, “Light emission from hot carriers in silicon MOSFETs,” Semicond. Sci. Technol. 7, B567–B569 (1992).
[CrossRef]

Kantor, M.

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Kitao, M.

S. Yamada and M. Kitao, “Recombination radiation as possible mechanism of light-emission from reverse-biased p-n junctions under breakdown condition,” Jpn. J. Appl. Phys. 32, 4555–4559 (1993).
[CrossRef]

Kouprienko, D.

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Kronast, B.

B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
[CrossRef]

Lanzoni, M.

M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
[CrossRef]

Laux, S.

M. Fischetti, S. Laux, and D. Dimaria, “The physics of hot-electron degradation of Si MOSFET’s: can we understand it?” Appl. Surf. Sci. 39, 578–596 (1989).
[CrossRef]

Lee, H.-C.

H.-C. Lee and C.-K. Liu, “Si-based current-density-enhanced light emission and low-operating-voltage light-emitting/receiving designs,” Solid-State Electron. 49, 1172–1178 (2005).
[CrossRef]

Leistiko, O.

A. Grove, O. Leistiko, and W. Hooper, “Effect of channel surface fields on the breakdown voltage of planar silicon p-n junctions,” IEEE Trans. Electron Devices 14, 157–162 (1967).
[CrossRef]

Li, G.

K. Xu and G. Li, “A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology,” J. Appl. Phys. 113, 103106 (2013).
[CrossRef]

K. Xu and G. Li, “A three terminal silicon-PMOSFET like light emitting device (LED) for optical intensity modulation,” IEEE Photon. J. 4, 2159–2168 (2012).
[CrossRef]

K. Xu and G. Li, “Insulated-gate field effect transistor (IGFET) silicon-LED with monolithic integration into silicon CMOS ICs,” IEEE Trans. Electron Devices (to be published).

Liu, C.-K.

H.-C. Lee and C.-K. Liu, “Si-based current-density-enhanced light emission and low-operating-voltage light-emitting/receiving designs,” Solid-State Electron. 49, 1172–1178 (2005).
[CrossRef]

Lo, Y.-H.

H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, “Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout,” IEEE J. Sel. Top. Quantum Electron. 13, 959–966 (2007).
[CrossRef]

Lyon, S. A.

K. Hublitz and S. A. Lyon, “Light emission from hot carriers in silicon MOSFETs,” Semicond. Sci. Technol. 7, B567–B569 (1992).
[CrossRef]

Manfredi, M.

M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
[CrossRef]

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Marais, J.

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

Newman, R.

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100, 700–703 (1955).
[CrossRef]

Niekerk, D.

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

Pavesi, M.

L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
[CrossRef]

Peracci, A.

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Ricco, B.

M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
[CrossRef]

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Rohr, H.

B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
[CrossRef]

Ropke, G.

C. Fortmann, A. Wierling, and G. Ropke, “Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasma,” Phys. Rev. E 81, 026405 (2010).
[CrossRef]

Sangiorgi, E.

L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
[CrossRef]

M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
[CrossRef]

Seevinck, E.

L. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20, 614–617 (1999).
[CrossRef]

Selmi, L.

L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
[CrossRef]

Snyman, L.

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

L. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20, 614–617 (1999).
[CrossRef]

Soncini, G.

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Stepanov, A.

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), p. 13.

S. M. Sze, Semiconductor Sensors (Wiley, 1994), p. 277.

Tyagi, M.

M. Tyagi, “Zener and avalanche breakdown in silicon alloyed p-n junctions,” Solid State Electron. 11, 577–582 (1968).
[CrossRef]

Versari, R.

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Wierling, A.

C. Fortmann, A. Wierling, and G. Ropke, “Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasma,” Phys. Rev. E 81, 026405 (2010).
[CrossRef]

Wong, H.

L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
[CrossRef]

Xu, K.

K. Xu and G. Li, “A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology,” J. Appl. Phys. 113, 103106 (2013).
[CrossRef]

K. Xu and G. Li, “A three terminal silicon-PMOSFET like light emitting device (LED) for optical intensity modulation,” IEEE Photon. J. 4, 2159–2168 (2012).
[CrossRef]

K. Xu and G. Li, “Insulated-gate field effect transistor (IGFET) silicon-LED with monolithic integration into silicon CMOS ICs,” IEEE Trans. Electron Devices (to be published).

Yamada, S.

S. Yamada and M. Kitao, “Recombination radiation as possible mechanism of light-emission from reverse-biased p-n junctions under breakdown condition,” Jpn. J. Appl. Phys. 32, 4555–4559 (1993).
[CrossRef]

Zorzi, N.

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

Zwicker, H.

B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
[CrossRef]

Appl. Surf. Sci.

M. Fischetti, S. Laux, and D. Dimaria, “The physics of hot-electron degradation of Si MOSFET’s: can we understand it?” Appl. Surf. Sci. 39, 578–596 (1989).
[CrossRef]

IEEE Electron Device Lett.

M. Lanzoni, E. Sangiorgi, C. Fiegna, M. Manfredi, and B. Ricco, “Extended (1.1–2.9 eV) hot-carrier-induced photon emission in n-channel Si MOSFETs,” IEEE Electron Device Lett. 12, 341–343 (1991).
[CrossRef]

L. Snyman, M. du Plessis, E. Seevinck, and H. Aharoni, “An efficient low voltage, high frequency silicon CMOS light emitting device and electro-optical interface,” IEEE Electron Device Lett. 20, 614–617 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Finkelstein, M. Gross, Y.-H. Lo, and S. Esener, “Analysis of hot-carrier luminescence for infrared single-photon upconversion and readout,” IEEE J. Sel. Top. Quantum Electron. 13, 959–966 (2007).
[CrossRef]

IEEE Photon. J.

K. Xu and G. Li, “A three terminal silicon-PMOSFET like light emitting device (LED) for optical intensity modulation,” IEEE Photon. J. 4, 2159–2168 (2012).
[CrossRef]

IEEE Trans. Electron Devices

A. Grove, O. Leistiko, and W. Hooper, “Effect of channel surface fields on the breakdown voltage of planar silicon p-n junctions,” IEEE Trans. Electron Devices 14, 157–162 (1967).
[CrossRef]

A. Grove and D. Fitzgerald, “The origin of channel currents associated with p+ regions in silicon,” IEEE Trans. Electron Devices 12, 619–626 (1965).
[CrossRef]

L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, “Monitoring hot-carrier degradation in SOI MOSFET’s by hot-carrier luminescence techniques,” IEEE Trans. Electron Devices 45, 1135–1139 (1998).
[CrossRef]

J. Appl. Phys.

K. Xu and G. Li, “A novel way to improve the quantum efficiency of silicon light-emitting diode in a standard silicon complementary metal-oxide-semiconductor technology,” J. Appl. Phys. 113, 103106 (2013).
[CrossRef]

Jpn. J. Appl. Phys.

S. Yamada and M. Kitao, “Recombination radiation as possible mechanism of light-emission from reverse-biased p-n junctions under breakdown condition,” Jpn. J. Appl. Phys. 32, 4555–4559 (1993).
[CrossRef]

Opt. Eng.

L. Snyman, H. Aharoni, M. du Plessis, J. Marais, D. Niekerk, and A. Biber, “Planar light-emitting electro-optical interfaces in standard silicon complementary metal oxide semiconductor integrated circuitry,” Opt. Eng. 41, 3230–3240 (2002).
[CrossRef]

Phys. Rev.

R. Newman, “Visible light from a silicon p-n junction,” Phys. Rev. 100, 700–703 (1955).
[CrossRef]

Phys. Rev. E

C. Fortmann, A. Wierling, and G. Ropke, “Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasma,” Phys. Rev. E 81, 026405 (2010).
[CrossRef]

Phys. Rev. Lett.

B. Kronast, H. Rohr, E. Glock, H. Zwicker, and E. Funfer, “Measurements of the ion and electron temperature in a theta-pinch plasma by forward scattering,” Phys. Rev. Lett. 16, 1082–1085 (1966).
[CrossRef]

Plasma Phys. Control. Fusion

E. Gusakov, A. Gurchenko, A. Altukhov, A. Stepanov, L. Esipov, M. Kantor, and D. Kouprienko, “Investigation of ETG mode-scale component of tokamak plasma turbulence by correlative enhanced scattering diagnostics,” Plasma Phys. Control. Fusion 48, A371–A376 (2006).
[CrossRef]

Semicond. Sci. Technol.

K. Hublitz and S. A. Lyon, “Light emission from hot carriers in silicon MOSFETs,” Semicond. Sci. Technol. 7, B567–B569 (1992).
[CrossRef]

Solid State Electron.

M. Tyagi, “Zener and avalanche breakdown in silicon alloyed p-n junctions,” Solid State Electron. 11, 577–582 (1968).
[CrossRef]

Solid-State Electron.

H.-C. Lee and C.-K. Liu, “Si-based current-density-enhanced light emission and low-operating-voltage light-emitting/receiving designs,” Solid-State Electron. 49, 1172–1178 (2005).
[CrossRef]

Other

K. Xu and G. Li, “Insulated-gate field effect transistor (IGFET) silicon-LED with monolithic integration into silicon CMOS ICs,” IEEE Trans. Electron Devices (to be published).

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981), p. 13.

P. Bellutti, G. Betta, N. Zorzi, R. Versari, A. Peracci, B. Rićco, M. Manfredi, and G. Soncini, “Fowler Norheim induced light emission from MOS diodes,” International Conference on Microelectronic Test Structures (IEEE, 2000), pp. 223–226.

S. M. Sze, Semiconductor Sensors (Wiley, 1994), p. 277.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the Si-PMOSFET LED: (a) cross-sectional view along the channel and (b) cross-sectional view of the gate terminal.

Fig. 2.
Fig. 2.

Schematic for measuring BV of the pn junctions.

Fig. 3.
Fig. 3.

Vg versus BV by sweeping Vsub from 0 to 50 V: x axis is BV with 5V/decade; y axis is Isub with 5mA/decade. (a) Vg=0V: device starts breakdown at 40  V (corresponding to soft breakdown-voltage), and completely breaks down at 45 V (corresponding to hard breakdown-voltage). (b) Vg=30.12V: device starts breakdown at 17.5 V, and completely breaks down at 25 V. (c) Vg=35V: device starts breakdown at 12 V and completely breaks down at 20 V. (d) Vg=40V: device starts breakdown at 10 V and completely breaks down at about 15 V.

Fig. 4.
Fig. 4.

Correlation between the “Vg versus BV” curve and the linear curve at Vsub=50V and Vd=Vs=0V.

Fig. 5.
Fig. 5.

Measurement under the operating conditions: source and drain are grounded, substrate voltage equals to 50 V, and varying gate voltage. (a) Correlation between optical emission power and reverse current Isub as a function of gate voltage Vg. (b) Optical emission power versus Reverse current Isub at wavelength peaks: 650 and 780 nm.

Fig. 6.
Fig. 6.

Normalized electroluminescence spectra at different gate voltages while the reverse bias of the P+ source/drain to N-substrate junction is 50 V: (a) at Vg=11.2V and (b) at Vg=30.1V.

Fig. 7.
Fig. 7.

Relationship between reverse current Isub and efficiency at reverse-bias of Vsub=50V: (a) reverse current versus quantum efficiency and (b) reverse current versus power conversion efficiency.

Fig. 8.
Fig. 8.

Relationship between reverse current Isub and efficiency at reverse bias of Vsub=35V: (a) reverse current versus quantum efficiency and (b) reverse current versus power conversion efficiency.

Fig. 9.
Fig. 9.

Ratio of light intensity at 600 nm to light intensity at 500 nm as a function of reverse current Isub.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

BV=mVg+constant,
PBdΩdλs=2.09×1036gZ2(neniλs2Te)exp(1.24×104λsTe)VpdΩ4πdλs,
WD=neq2vmecεsiωi2PiA,
f(E)=Cexp(EkTe),
ΔTeTe=0τWDdt1.5κTene,
ηQ=(qλVhc)ηP,

Metrics