Abstract

We suggest and analyze a new compact nonreciprocal optical component based on a magneto-optical (MO) resonator. This component fulfills simultaneously two functions, namely, equal division of the input signal between three output ports and isolation of the input port from output ones. Using group theory, we analyze the scattering matrix of this symmetrical component. Our numerical results for one of the possible schemes of the divider based on 2D photonic crystal with MO material demonstrate that, at the central frequency, the division of the signal between the three output ports is about 6.4dB. The variation of the division levels in the output ports in this band is (6.4±0.4)dB. For two of the output ports, the calculated bandwidth for the level 20dB of the isolation is around 219 GHz at the wavelength 1.55 μm. For the third output port, the isolation at the central frequency is about 6dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
    [CrossRef]
  2. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
    [CrossRef]
  3. V. Dmitriev, M. Kawakatsu, and F. J. M. de Souza, “Compact three-port optical 2D photonic crystal-based circulator of W-format,” Opt. Lett. 37, 3192–3194 (2012).
    [CrossRef]
  4. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystal,” Opt. Lett. 30, 1989–1991 (2005).
    [CrossRef]
  5. W. Smigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto–optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
    [CrossRef]
  6. S. Boscolo, M. Midrio, and T. F. Kraus, “Y junctions in photonic crystals channel waveguides: high transmission and impedance matching,” Opt. Lett. 27, 1001–1003 (2002).
    [CrossRef]
  7. V. Dmitriev and M. Kawakatsu, “Nonreciprocal optical divider based on 2D photonic crystal and magneto-optical cavity,” Appl. Opt. 51, 5917–5920 (2012).
    [CrossRef]
  8. A. Esmaieli and R. Ghayour, “Magneto-optical photonic crystal 1×3 switchable power divider,” Photon. Nanostr. Fundam. Appl. 10, 131–139 (2012).
    [CrossRef]
  9. A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).
  10. J. L. Altman, Microwave Circuits (van Nostrand, 1964).
  11. www.comsol.com .
  12. M. C. Sekhar, M. R. Singh, S. Basu, and S. Pinnepalli, “Giant Faraday rotation in BixCe3−xFe5O12 epitaxial garnet films,” Opt. Express 20, 9624–9639 (2012).
    [CrossRef]
  13. E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
    [CrossRef]
  14. S. Methfessel and D. C. Mattis, “Magnetic semiconductors,” in Handbuch der Physik, S. Fliigge and H. P. J. Wijn, eds. (Springer-Verlag, 1968).
  15. A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).

2012 (4)

2010 (1)

2008 (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

2006 (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

2005 (1)

2002 (1)

1975 (1)

E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
[CrossRef]

Altman, J. L.

J. L. Altman, Microwave Circuits (van Nostrand, 1964).

Barybin, A. A.

A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).

Basu, S.

Boscolo, S.

Dagens, B.

de Souza, F. J. M.

Dmitriev, V.

Dmitriev, V. A.

A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).

Esmaieli, A.

A. Esmaieli and R. Ghayour, “Magneto-optical photonic crystal 1×3 switchable power divider,” Photon. Nanostr. Fundam. Appl. 10, 131–139 (2012).
[CrossRef]

Fan, S.

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystal,” Opt. Lett. 30, 1989–1991 (2005).
[CrossRef]

Ghayour, R.

A. Esmaieli and R. Ghayour, “Magneto-optical photonic crystal 1×3 switchable power divider,” Photon. Nanostr. Fundam. Appl. 10, 131–139 (2012).
[CrossRef]

Gralak, B.

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Kawakatsu, M.

Kotov, V. A.

A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).

Kraus, T. F.

Magdenko, L.

Mattis, D. C.

S. Methfessel and D. C. Mattis, “Magnetic semiconductors,” in Handbuch der Physik, S. Fliigge and H. P. J. Wijn, eds. (Springer-Verlag, 1968).

Methfessel, S.

S. Methfessel and D. C. Mattis, “Magnetic semiconductors,” in Handbuch der Physik, S. Fliigge and H. P. J. Wijn, eds. (Springer-Verlag, 1968).

Midrio, M.

Nagaev, E. L.

E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
[CrossRef]

Pinnepalli, S.

Romero-Vivas, J.

Sekhar, M. C.

Singh, M. R.

Smigaj, W.

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Vanwolleghem, M.

Wang, Z.

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystal,” Opt. Lett. 30, 1989–1991 (2005).
[CrossRef]

Zvezdin, A. K.

A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).

Appl. Opt. (1)

Opt. Express (1)

Opt. Lett. (4)

Photon. Nanostr. Fundam. Appl. (2)

A. Esmaieli and R. Ghayour, “Magneto-optical photonic crystal 1×3 switchable power divider,” Photon. Nanostr. Fundam. Appl. 10, 131–139 (2012).
[CrossRef]

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

Phys. Rev. A (1)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Sov. Phys. Usp. (1)

E. L. Nagaev, “Ferromagnetic and antiferromagnetic semiconductors,” Sov. Phys. Usp. 18, 863–892 (1975).
[CrossRef]

Other (5)

S. Methfessel and D. C. Mattis, “Magnetic semiconductors,” in Handbuch der Physik, S. Fliigge and H. P. J. Wijn, eds. (Springer-Verlag, 1968).

A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997).

A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics (Rinton, 2002).

J. L. Altman, Microwave Circuits (van Nostrand, 1964).

www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Six-port with dipole mode resonator: (a) symmetry elements of magnetic group C6v(C6), (b) dipole mode without magnetization, (c) dipole mode rotated by dc field H0 by 30° clockwise, and (d) dipole mode rotated by dc field H0 by 30° anticlockwise.

Fig. 2.
Fig. 2.

Details of divider in Fig. 1(c) with two matched loads. Arrows inside the resonator show division of incident wave.

Fig. 3.
Fig. 3.

Divider of Fig. 2. (a) Excitation of port 2, (b) excitation of port 4, and (c) excitation of port 5.

Fig. 4.
Fig. 4.

Frequency splitting between right- and left-rotating modes of resonator versus tensor parameter g.

Fig. 5.
Fig. 5.

Comparison of frequency characteristics of resonance modes ω+ and ω for loaded (upper inset) and unloaded (lower inset) resonators in magnetized PhC with g=0.3.

Fig. 6.
Fig. 6.

Losses in rectilinear PhC waveguide in magnetized state.

Fig. 7.
Fig. 7.

Frequency responses of divider for excitation at port 1.

Fig. 8.
Fig. 8.

Hz component of electromagnetic field in divider for excitation at port 1 at central frequency ωa/2πc=0.3035.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[R]C6=(000001100000010000001000000100000010).
[S]=(S11S12S13S14S15S16S16S11S12S13S14S15S15S16S11S12S13S14S14S15S16S11S12S13S13S14S15S16S11S12S12S13S14S15S16S11).
[P]=(001/31/301/31/3001/31/3001/3001/31/31/301/3001/31/31/301/30001/31/301/30).
[ϵ]=ϵ0(ϵrig0igϵr000ϵr);μ=μ0.

Metrics