Abstract

The optical transmission and reflection in between two metalized optical fiber tips is studied in the optical near-field and far-field domains. In addition to aluminum-coated tips for near-field scanning optical microscopy (NSOM), specifically developed gold-coated fiber tips cut by focused ion beam are investigated. Transverse transmission maps of subwavelength width clearly indicate optical near-field coupling between the tips for short tip distances and become essentially Gaussian-shaped for larger distances in the far-field regime. Moreover, concentric reflection fringes observed for NSOM-type tips illustrate the influence of the receiving fiber tip on the emission pattern of the source tip.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
    [CrossRef]
  2. S. Eom, Y. Takaya, and T. Hayashi, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33, 235–242 (2009).
    [CrossRef]
  3. Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14, 12510–12516 (2006).
    [CrossRef]
  4. S. Valkai, L. Oroszi, and P. Ormos, “Optical tweezers with tips grown at the end of fibers by photopolymerization,” Appl. Opt. 48, 2880–2883 (2009).
    [CrossRef]
  5. E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
    [CrossRef]
  6. J.-B. Decombe, W. Schwartz, C. Villard, H. Guillou, J. Chevrier, S. Huant, and J. Fick, “A fibered interference scanning optical microscope for living cell imaging,” Opt. Express 19, 2702–2710 (2011).
    [CrossRef]
  7. E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
    [CrossRef]
  8. C. Obermüller and K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
    [CrossRef]
  9. A. Drezet, M. Nasse, S. Huant, and J. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
    [CrossRef]
  10. A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
    [CrossRef]
  11. T. J. Antosiewicz and T. Szoplik, “Description of near- and far-field light emitted from a metal-coated tapered fiber tip,” Opt. Express 15, 7845–7852 (2007).
    [CrossRef]
  12. J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
    [CrossRef]
  13. H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
    [CrossRef]
  14. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  15. J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14, 083041 (2012).
    [CrossRef]
  16. I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to tip scan,” Optik 124, 1971–1973 (2013).
    [CrossRef]
  17. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
    [CrossRef]
  18. Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
    [CrossRef]
  19. N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
    [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), Chap. 9.2.
  21. A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: resolution versus the aperture tip?” Opt. Commun. 284, 1444–1450 (2011).
    [CrossRef]

2013

I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to tip scan,” Optik 124, 1971–1973 (2013).
[CrossRef]

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[CrossRef]

2012

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[CrossRef]

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14, 083041 (2012).
[CrossRef]

2011

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: resolution versus the aperture tip?” Opt. Commun. 284, 1444–1450 (2011).
[CrossRef]

J.-B. Decombe, W. Schwartz, C. Villard, H. Guillou, J. Chevrier, S. Huant, and J. Fick, “A fibered interference scanning optical microscope for living cell imaging,” Opt. Express 19, 2702–2710 (2011).
[CrossRef]

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

2009

S. Eom, Y. Takaya, and T. Hayashi, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33, 235–242 (2009).
[CrossRef]

S. Valkai, L. Oroszi, and P. Ormos, “Optical tweezers with tips grown at the end of fibers by photopolymerization,” Appl. Opt. 48, 2880–2883 (2009).
[CrossRef]

2007

2006

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
[CrossRef]

Z. Liu, C. Guo, J. Yang, and L. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express 14, 12510–12516 (2006).
[CrossRef]

2004

A. Drezet, M. Nasse, S. Huant, and J. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

2002

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

1995

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

C. Obermüller and K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

1991

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef]

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Alegret, J.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Antosiewicz, T. J.

Bak, W.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Bao, K.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Barthes, J.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14, 083041 (2012).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef]

Bouhelier, A.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14, 083041 (2012).
[CrossRef]

Chevalier, N.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
[CrossRef]

Chevrier, J.

Colas des Francs, G.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14, 083041 (2012).
[CrossRef]

Cuche, A.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: resolution versus the aperture tip?” Opt. Commun. 284, 1444–1450 (2011).
[CrossRef]

de Leon-Perez, F.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Decombe, J.-B.

Degiron, A.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Dereux, A.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14, 083041 (2012).
[CrossRef]

Drezet, A.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: resolution versus the aperture tip?” Opt. Commun. 284, 1444–1450 (2011).
[CrossRef]

A. Drezet, M. Nasse, S. Huant, and J. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Eah, S.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Ebbesen, T.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Eom, S.

S. Eom, Y. Takaya, and T. Hayashi, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33, 235–242 (2009).
[CrossRef]

Fick, J.

Genet, C.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Gordon, R.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[CrossRef]

Guillou, H.

Guo, C.

Halas, N.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Harris, T.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef]

Hayashi, T.

S. Eom, Y. Takaya, and T. Hayashi, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33, 235–242 (2009).
[CrossRef]

Huant, S.

J.-B. Decombe, W. Schwartz, C. Villard, H. Guillou, J. Chevrier, S. Huant, and J. Fick, “A fibered interference scanning optical microscope for living cell imaging,” Opt. Express 19, 2702–2710 (2011).
[CrossRef]

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: resolution versus the aperture tip?” Opt. Commun. 284, 1444–1450 (2011).
[CrossRef]

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
[CrossRef]

A. Drezet, M. Nasse, S. Huant, and J. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), Chap. 9.2.

Jones, P.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

Kaneda, S.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[CrossRef]

Karczewska, E.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

Karrai, K.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
[CrossRef]

C. Obermüller and K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

Kihm, H.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Kihm, J.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Kim, D.-S.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Kim, H.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Kim, Q.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Koo, S.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Kostelak, R.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef]

Kubicova, I.

I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to tip scan,” Optik 124, 1971–1973 (2013).
[CrossRef]

Laux, E.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Lienau, C.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Liu, Z.

Lyons, E. R.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

Maragó, O.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

Martin-Moreno, L.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Motte, J. F.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
[CrossRef]

Nasse, M.

A. Drezet, M. Nasse, S. Huant, and J. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

Nordlander, P.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Obermüller, C.

C. Obermüller and K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

Ormos, P.

Oroszi, L.

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[CrossRef]

Park, N.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

Patel, R.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

Pudis, D.

I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to tip scan,” Optik 124, 1971–1973 (2013).
[CrossRef]

Sasaki, K.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[CrossRef]

Schwartz, W.

Sergides, M.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

Skelton, S.

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

Skriniarova, J.

I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to tip scan,” Optik 124, 1971–1973 (2013).
[CrossRef]

Sonek, G. J.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

Sonnefraud, Y.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
[CrossRef]

Suslik, L.

I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to tip scan,” Optik 124, 1971–1973 (2013).
[CrossRef]

Szoplik, T.

Takaya, Y.

S. Eom, Y. Takaya, and T. Hayashi, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33, 235–242 (2009).
[CrossRef]

Tanaka, Y.

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[CrossRef]

Trautman, J.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef]

Valkai, S.

Villard, C.

Weiner, J.

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef]

Woehl, J.

A. Drezet, M. Nasse, S. Huant, and J. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

Woehl, J. C.

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Yang, J.

Yi, J.-M.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Yuan, L.

Appl. Opt.

Appl. Phys. Lett.

E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispherically lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).
[CrossRef]

C. Obermüller and K. Karrai, “Far field characterization of diffracting circular apertures,” Appl. Phys. Lett. 67, 3408–3410 (1995).
[CrossRef]

Europhys. Lett.

A. Drezet, M. Nasse, S. Huant, and J. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66, 41–47 (2004).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

S. Skelton, M. Sergides, R. Patel, E. Karczewska, O. Maragó, and P. Jones, “Evanescent wave optical trapping and transport of micro- and nanoparticles on tapered optical fibers,” J. Quant. Spectrosc. Radiat. Transfer 113, 2512–2520 (2012).
[CrossRef]

Nano Lett.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12, 402–406 (2012).
[CrossRef]

Y. Tanaka, S. Kaneda, and K. Sasaki, “Nanostructured potential of optical trapping using a plasmonic nanoblock pair,” Nano Lett. 13, 2146–2150 (2013).
[CrossRef]

Nat. Commun.

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, P. Nordlander, N. Halas, N. Park, and D.-S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat. Commun. 2, 451 (2011).
[CrossRef]

New J. Phys.

J. Barthes, G. Colas des Francs, A. Bouhelier, and A. Dereux, “A coupled lossy local-mode theory description of a plasmonic tip,” New J. Phys. 14, 083041 (2012).
[CrossRef]

Opt. Commun.

A. Drezet, A. Cuche, and S. Huant, “Near-field microscopy with a single-photon point-like emitter: resolution versus the aperture tip?” Opt. Commun. 284, 1444–1450 (2011).
[CrossRef]

Opt. Express

Optik

I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to tip scan,” Optik 124, 1971–1973 (2013).
[CrossRef]

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. E

A. Drezet, J. C. Woehl, and S. Huant, “Diffraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002).
[CrossRef]

Phys. Rev. Lett.

J.-M. Yi, A. Cuche, F. de Leon-Perez, A. Degiron, E. Laux, C. Genet, J. Alegret, L. Martin-Moreno, and T. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett. 109, 023901 (2012).
[CrossRef]

Precis. Eng.

S. Eom, Y. Takaya, and T. Hayashi, “Novel contact probing method using single fiber optical trapping probe,” Precis. Eng. 33, 235–242 (2009).
[CrossRef]

Rev. Sci. Instrum.

N. Chevalier, Y. Sonnefraud, J. F. Motte, S. Huant, and K. Karrai, “Aperture-size-controlled optical fiber tips for high-resolution optical microscopy,” Rev. Sci. Instrum. 77, 063704 (2006).
[CrossRef]

Science

E. Betzig, J. Trautman, T. Harris, J. Weiner, and R. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).
[CrossRef]

Other

J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), Chap. 9.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scanning electron micrographs of the two fiber tip types used: (a) typical NSOM tip and (b) the FIB-cut tips used in the experiments.

Fig. 2.
Fig. 2.

Scheme of the experimental setup.

Fig. 3.
Fig. 3.

Transverse transmission (left) and reflection (right) intensity maps of a NSOM tip pair at two distances d. The maximal intensities are indicated for an injected power of Pin=300μW.

Fig. 4.
Fig. 4.

Position of the interference rings as a function of the axial (d) and transverse (r) fiber tips distances.

Fig. 5.
Fig. 5.

Experimental (left) and theoretical (right) transverse transmission intensity maps of the FIB-cut fiber tip pair shown in Fig. 1(b). Maximal intensities are indicated for the experimental results.

Fig. 6.
Fig. 6.

Major and minor axis transmission waists of the elliptical transmission spot (see Fig. 5) as a function of the tip distance d (points, corrected experimental data with error bars; solid lines, theory).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(r)=I0·e2(rr0)2w2
w˜=w2w02
dmmin=(m2+14)·λ,dmmax=m2·λ
p=i2πck^×Hi,m=i2πck^×Ei
E(r)=14πϵ0{(r^×p)×r^k2r+[3r^(r^·p)p](1r3ikr2)1Z0(r^×m)k2(1r1ikr2)}eikr

Metrics