Abstract

In this paper, a novel and compact configuration of stable multiwavelength generation with a uniform wavelength interval is proposed for the first time to our knowledge. It employs a mode-locked fiber laser using a carbon nanotube and spectrum-slicing technique. A flat rectangular optical output spectrum is demonstrated by adjusting the dispersion value of the fiber-loop cavity and the pump power. With a fiber Fabry–Perot filter, 33 wavelengths with 0.2 nm spacing are obtained among the power uniformity of 2.3 dB. Moreover, the variations of output power at each wavelength are all less than 0.1 dB, which implies excellent stability of the whole structure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
    [CrossRef]
  2. A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
    [CrossRef]
  3. Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008).
    [CrossRef]
  4. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersion-managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17, 455–460 (2009).
    [CrossRef]
  5. S. Y. Set, H. Y. Chi, Y. Chi, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004).
    [CrossRef]
  6. C. B. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked doped fiber laser with carbon nanotubes based saturable absorber,” Opt. Express 2, 884–890 (2012).
    [CrossRef]
  7. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009).
    [CrossRef]
  8. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
    [CrossRef]
  9. N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
    [CrossRef]
  10. H. Lim, F. Ö. Ilday, and F. W. Wise, “Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser, ” Opt. Lett. 28, 660–662 (2003).
    [CrossRef]
  11. J. H. Im, S. Y. Choi, F. Rotermund, and D. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18, 22141–22146 (2010).
    [CrossRef]
  12. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31, 1788–1790 (2006).
    [CrossRef]
  13. W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
    [CrossRef]
  14. X. L. Li, Q. Z. Sun, J. H. Wo, M. L. Zhang, and D. M. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30, 1113–1120 (2012).
    [CrossRef]
  15. H. H. Lee, S. H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source,” IEEE Photon. Technol. Lett. 22, 1542–1544 (2010).
    [CrossRef]

2012 (2)

C. B. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked doped fiber laser with carbon nanotubes based saturable absorber,” Opt. Express 2, 884–890 (2012).
[CrossRef]

X. L. Li, Q. Z. Sun, J. H. Wo, M. L. Zhang, and D. M. Liu, “Hybrid TDM/WDM-based fiber-optic sensor network for perimeter intrusion detection,” J. Lightwave Technol. 30, 1113–1120 (2012).
[CrossRef]

2011 (1)

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

2010 (2)

H. H. Lee, S. H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source,” IEEE Photon. Technol. Lett. 22, 1542–1544 (2010).
[CrossRef]

J. H. Im, S. Y. Choi, F. Rotermund, and D. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18, 22141–22146 (2010).
[CrossRef]

2009 (2)

2008 (2)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008).
[CrossRef]

2007 (2)

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007).
[CrossRef]

2006 (1)

2004 (1)

2003 (1)

1996 (1)

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

An, Q.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

Arif, R.

C. B. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked doped fiber laser with carbon nanotubes based saturable absorber,” Opt. Express 2, 884–890 (2012).
[CrossRef]

Chi, H. Y.

Chi, Y.

Cho, S. H.

H. H. Lee, S. H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source,” IEEE Photon. Technol. Lett. 22, 1542–1544 (2010).
[CrossRef]

Choi, S. Y.

Chong, A.

Dianov, E. M.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

Dvoyrin, V. V.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Gao, W. Q.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

He, H. C.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Ilday, F. Ö.

Im, J. H.

Jablonski, M.

Lee, H. H.

H. H. Lee, S. H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source,” IEEE Photon. Technol. Lett. 22, 1542–1544 (2010).
[CrossRef]

Lee, S. S.

H. H. Lee, S. H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source,” IEEE Photon. Technol. Lett. 22, 1542–1544 (2010).
[CrossRef]

Li, X. L.

Lim, H.

Liu, D. M.

Luo, A. P.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

Luo, Z. C.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

Mashinsky, V. M.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Ming, H.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

Mou, C. B.

C. B. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked doped fiber laser with carbon nanotubes based saturable absorber,” Opt. Express 2, 884–890 (2012).
[CrossRef]

Nie, Y. Y.

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008).
[CrossRef]

Park, N.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

Renninger, W. H.

Rotermund, F.

Rozhin, A.

C. B. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked doped fiber laser with carbon nanotubes based saturable absorber,” Opt. Express 2, 884–890 (2012).
[CrossRef]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Sang, M. H.

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008).
[CrossRef]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Set, S. Y.

Sun, Q. Z.

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Tam, H. Y.

Tang, D. Y.

Turitsyn, S.

C. B. Mou, R. Arif, A. Rozhin, and S. Turitsyn, “Passively harmonic mode locked doped fiber laser with carbon nanotubes based saturable absorber,” Opt. Express 2, 884–890 (2012).
[CrossRef]

Wang, A. T.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Wang, Y. C.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Wise, F. W.

Wo, J. H.

Wu, J.

Wu, X.

Wysocki, P. F.

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

Xu, L. X.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

Xu, W. C.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

Ye, Z. Q.

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008).
[CrossRef]

Yeom, D.

Zhang, H.

Zhang, M. L.

Zhang, Z. X.

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008).
[CrossRef]

Zhao, L. M.

Zheng, H.

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

W. Q. Gao, H. Zheng, L. X. Xu, A. T. Wang, H. Ming, Q. An, H. C. He, and Y. C. Wang, “Multiple-pulse operation in passively mode-locked fiber laser with positive dispersion cavity,” Chin. Phys. Lett. 24, 1267–1269 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. H. Lee, S. H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow-bandwidth seed light source,” IEEE Photon. Technol. Lett. 22, 1542–1544 (2010).
[CrossRef]

N. Park and P. F. Wysocki, “24-line multiwavelength operation of erbium-doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459–1461 (1996).
[CrossRef]

J. Lightwave Technol. (2)

Laser Phys. Lett (1)

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. M. Dianov, “Tunable and switchable dual-wavelength passively mode-locked bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett, 8, 601–605 (2011).
[CrossRef]

Laser Phys. Lett. (1)

Z. X. Zhang, Z. Q. Ye, M. H. Sang, and Y. Y. Nie, “Passively mode-locked fiber laser based on symmetrical nonlinear optical loop mirror,” Laser Phys. Lett. 5, 364–366 (2008).
[CrossRef]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband tunable, nanotube mode-locked fiber lasers,” Nat. Nanotechnol. 3, 738–742 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed multiwavelength generation with a FFPF.

Fig. 2.
Fig. 2.

Output laser spectrum without FFPF.

Fig. 3.
Fig. 3.

Output pulse at different pump powers (a) 146 mW, (b) 156 mW, (c) 162 mW, and (d) 175 mW.

Fig. 4.
Fig. 4.

Multiwavelength output spectrum with spacing of 0.2 nm.

Fig. 5.
Fig. 5.

Repeatedly scanned output spectrum with 5 min interval in 30 min.

Metrics