Abstract

Large-pixel-count holograms are one essential part for big size holographic three-dimensional (3D) display, but the generation of such holograms is computationally demanding. In order to address this issue, we have built a graphics processing unit (GPU) cluster with 32.5Tflop/s computing power and implemented distributed hologram computation on it with speed improvement techniques, such as shared memory on GPU, GPU level adaptive load balancing, and node level load distribution. Using these speed improvement techniques on the GPU cluster, we have achieved 71.4 times computation speed increase for 186M-pixel holograms. Furthermore, we have used the approaches of diffraction limits and subdivision of holograms to overcome the GPU memory limit in computing large-pixel-count holograms. 745M-pixel and 1.80G-pixel holograms were computed in 343 and 3326 s, respectively, for more than 2 million object points with RGB colors. Color 3D objects with 1.02M points were successfully reconstructed from 186M-pixel hologram computed in 8.82 s with all the above three speed improvement techniques. It is shown that distributed hologram computation using a GPU cluster is a promising approach to increase the computation speed of large-pixel-count holograms for large size holographic display.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
    [Crossref]
  2. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
    [Crossref]
  3. X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
    [Crossref]
  4. M. Sich, “Interactive holography: pursuit of a dream,” Comput. Sci. Eng. 11, 62–65 (2009).
    [Crossref]
  5. M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. thesis (Massachusetts Institute of Technology, 1994).
  6. H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Conference on Digital Holography and Three-Dimensional Imaging, Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.
  7. N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clear speed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
    [Crossref]
  8. T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL,” Opt. Express 18, 9955–9960 (2010).
    [Crossref]
  9. H. Kang, F. Yaras, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 48, H137–H143 (2009).
    [Crossref]
  10. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51, 7303–7307 (2012).
    [Crossref]
  11. Y. C. Pan, X. W. Xu, S. Solanki, X. A. Liang, R. B. A. Tanjung, C. W. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
    [Crossref]
  12. Intel, Intel Xeon processor E7-8800 Series, (Intel, 2011). http://download.intel.com/support/processors/xeon/sb/xeon_E7-8800.pdf .
  13. Wikipedia, Comparison of Nvidia graphics processing units, (Wikipedia, 2012). http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units .
  14. nVidia, NVIDIA CUDA C Programming Guide Version 4.2, (nVidia, 2012). http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf .
  15. P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
    [Crossref]
  16. Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
    [Crossref]
  17. X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
    [Crossref]

2013 (2)

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

2012 (1)

2010 (3)

T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL,” Opt. Express 18, 9955–9960 (2010).
[Crossref]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
[Crossref]

2009 (4)

M. Sich, “Interactive holography: pursuit of a dream,” Comput. Sci. Eng. 11, 62–65 (2009).
[Crossref]

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clear speed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[Crossref]

H. Kang, F. Yaras, and L. Onural, “Graphics processing unit accelerated computation of digital holograms,” Appl. Opt. 48, H137–H143 (2009).
[Crossref]

Y. C. Pan, X. W. Xu, S. Solanki, X. A. Liang, R. B. A. Tanjung, C. W. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
[Crossref]

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

1990 (1)

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Bablumian, A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Benton, S. A.

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Blanche, P. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Chong, T. C.

X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
[Crossref]

Y. C. Pan, X. W. Xu, S. Solanki, X. A. Liang, R. B. A. Tanjung, C. W. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
[Crossref]

Christenson, C.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Flores, D.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Gu, T.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Hilaire, P.

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Hsieh, W.-Y.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Ichihashi, Y.

T. Shimobaba, T. Ito, N. Masuda, Y. Ichihashi, and N. Takada, “Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL,” Opt. Express 18, 9955–9960 (2010).
[Crossref]

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clear speed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[Crossref]

Ito, T.

Jepsen, M.

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Kang, H.

Kathaperumal, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Kitayama, R.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Conference on Digital Holography and Three-Dimensional Imaging, Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Kollin, J.

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Liang, X. A.

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
[Crossref]

Y. C. Pan, X. W. Xu, S. Solanki, X. A. Liang, R. B. A. Tanjung, C. W. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
[Crossref]

Lin, W.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Lucente, M.

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. thesis (Massachusetts Institute of Technology, 1994).

Lum, Z. M. A.

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Masuda, N.

Nakayama, H.

N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T. Ito, “Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system,” Appl. Opt. 51, 7303–7307 (2012).
[Crossref]

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clear speed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[Crossref]

Norwood, R. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Oikawa, M.

Okada, N.

Onural, L.

Pan, Y. C.

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
[Crossref]

Y. C. Pan, X. W. Xu, S. Solanki, X. A. Liang, R. B. A. Tanjung, C. W. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
[Crossref]

Peyghambarian, N.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Phyu, P.

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

Rachwal, B.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Shimobaba, T.

Shiraki, A.

Sich, M.

M. Sich, “Interactive holography: pursuit of a dream,” Comput. Sci. Eng. 11, 62–65 (2009).
[Crossref]

Siddiqui, O.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Solanki, S.

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
[Crossref]

Y. C. Pan, X. W. Xu, S. Solanki, X. A. Liang, R. B. A. Tanjung, C. W. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
[Crossref]

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Takada, N.

Tan, C. W.

Tanabe, N.

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clear speed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[Crossref]

Tanjung, R. B. A.

Thomas, J.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Underkoffler, J.

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Voorakaranam, R.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Wang, P.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Xu, X. W.

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
[Crossref]

Y. C. Pan, X. W. Xu, S. Solanki, X. A. Liang, R. B. A. Tanjung, C. W. Tan, and T. C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17, 18543–18555 (2009).
[Crossref]

Yamaguchi, T.

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Conference on Digital Holography and Three-Dimensional Imaging, Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Yamamoto, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Yaras, F.

Yoshikawa, H.

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Conference on Digital Holography and Three-Dimensional Imaging, Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Zheng, R. T.

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

Appl. Opt. (2)

Comput. Phys. Commun. (1)

N. Tanabe, Y. Ichihashi, H. Nakayama, N. Masuda, and T. Ito, “Speed-up of hologram generation using clear speed accelerator board,” Comput. Phys. Commun. 180, 1870–1873 (2009).
[Crossref]

Comput. Sci. Eng. (1)

M. Sich, “Interactive holography: pursuit of a dream,” Comput. Sci. Eng. 11, 62–65 (2009).
[Crossref]

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38, 46–53 (2005).
[Crossref]

Nature (1)

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[Crossref]

Opt. Express (2)

Proc. SPIE (4)

P. Hilaire, S. A. Benton, M. Lucente, M. Jepsen, J. Kollin, H. Yoshikawa, and J. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 174–182 (1990).
[Crossref]

Y. C. Pan, X. W. Xu, X. A. Liang, Z. M. A. Lum, R. T. Zheng, and P. Phyu, “Large-pixel-count hologram data processing for holographic 3D display,” Proc. SPIE 8644, 86440F (2013).
[Crossref]

X. W. Xu, X. A. Liang, Y. C. Pan, R. T. Zheng, Z. M. A. Lum, P. Phyu, and S. Solanki, “Development of full-color full-parallax digital 3D holographic display system and its prospects,” Proc. SPIE 8644, 864409 (2013).
[Crossref]

X. W. Xu, S. Solanki, X. A. Liang, Y. C. Pan, and T. C. Chong, “Full high-definition digital 3D holographic display and its enabling technologies,” Proc. SPIE 7730, 77301C (2010).
[Crossref]

Other (5)

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. thesis (Massachusetts Institute of Technology, 1994).

H. Yoshikawa, T. Yamaguchi, and R. Kitayama, “Real-time generation of full color image hologram with compact distance look-up table,” in Conference on Digital Holography and Three-Dimensional Imaging, Technical Digest (CD) (Optical Society of America, 2009), paper DWC4.

Intel, Intel Xeon processor E7-8800 Series, (Intel, 2011). http://download.intel.com/support/processors/xeon/sb/xeon_E7-8800.pdf .

Wikipedia, Comparison of Nvidia graphics processing units, (Wikipedia, 2012). http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units .

nVidia, NVIDIA CUDA C Programming Guide Version 4.2, (nVidia, 2012). http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Hologram computation flow.

Fig. 2.
Fig. 2.

Block diagram of the GPU cluster.

Fig. 3.
Fig. 3.

Node level computation flowchart.

Fig. 4.
Fig. 4.

Hologram computation time with and without using shared memory on GPU.

Fig. 5.
Fig. 5.

Hologram computation speed increase versus BR in GPU level adaptive load balancing.

Fig. 6.
Fig. 6.

Hologram computation time using different number of nodes (N.D., no distribution using 1 launching node; L, launching node; C, computing node).

Fig. 7.
Fig. 7.

Hologram computation time: (a) without any speed improvement technique and (b) with shared memory on GPU, GPU level adaptive load balancing and node level load distribution.

Fig. 8.
Fig. 8.

Reconstructed color 3D objects with different depths: (a) focused on the teacup and (b) focused on the teapot.

Fig. 9.
Fig. 9.

Hologram computation time for (a) 745M and (b) 1.80G-pixel counts.

Tables (3)

Tables Icon

Table 1. GPU Cluster Hardware Specifications

Tables Icon

Table 2. Object Space and Hologram Parameters

Tables Icon

Table 3. Object Space and Hologram Parameters for 745M-Pixel and 1.80G-Pixel Holograms

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

fhλ=sinθ,
Δx/z<tanθ,
|xxh|<z/(2dx/λ)21,
|yyh|<z/(2dy/λ)21,

Metrics