Abstract

Grating devices using photosensitive organic materials play an important role in the development of optical and optoelectronic systems. High diffraction efficiency and polarization dependence achieved in a holographic polymer-dispersed liquid crystal (HPDLC) grating are expected to provide polarization-controllable optical devices, such as a holographic memory for optically reconfigurable gate arrays (ORGAs). However, the optical property is affected by the thermal modulation around the transition temperature (Tni) where the liquid crystal (LC) changes from nematic to isotropic phases. The temperature dependence of the diffraction efficiency in HPDLC grating is investigated using four types of LC composites comprised of LCs and monomers having different physical properties such as Tni and anisotropic refractive indices. The holographic memory formed by the LC with low anisotropic refractive index and LC diacrylate monomer implements optical reconfiguration for ORGAs at a high temperature beyond Tni of LC.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  2. T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).
  3. J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
    [CrossRef]
  4. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
    [CrossRef]
  5. C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
    [CrossRef]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
    [CrossRef]
  7. J. J. Butler, M. S. Malcuit, and M. A. Rodriguez, “Diffractive properties of highly birefringent volume gratings: investigation,” J. Opt. Soc. Am. B 19, 183–189 (2002).
    [CrossRef]
  8. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
    [CrossRef]
  9. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. Π. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
    [CrossRef]
  10. M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
    [CrossRef]
  11. A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002).
    [CrossRef]
  12. Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
    [CrossRef]
  13. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
    [CrossRef]
  14. A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004).
    [CrossRef]
  15. I. D. Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006).
    [CrossRef]
  16. A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).
  17. A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).
  18. A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
    [CrossRef]
  19. A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
    [CrossRef]
  20. A. Ogiwara, “Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings,” Appl. Opt. 50, 594–603 (2011).
    [CrossRef]
  21. J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
    [CrossRef]
  22. J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
    [CrossRef]
  23. J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
    [CrossRef]
  24. M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006).
  25. N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
    [CrossRef]
  26. D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
    [CrossRef]
  27. M. Nakajima and M. Watanabe, “Optical buffering technique under a space radiation environment,” Opt. Lett. 34, 3719–3721 (2009).
    [CrossRef]
  28. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays,” Appl. Opt. 49, 4255–4261 (2010).
    [CrossRef]
  29. A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask,” Appl. Opt. 50, 6369–6376 (2011).
    [CrossRef]
  30. A. Ogiwara and M. Watanabe, “Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory,” Appl. Opt. 51, 5168–5177 (2012).
    [CrossRef]
  31. A. Ogiwara, M. Watanabe, and R. Moriwaki, “Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal,” Opt. Lett. 38, 1158–1160 (2013).
    [CrossRef]

2013 (1)

2012 (1)

2011 (2)

2010 (2)

2009 (1)

2008 (4)

A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
[CrossRef]

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

2007 (1)

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).

2006 (2)

I. D. Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006).
[CrossRef]

M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006).

2004 (3)

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004).
[CrossRef]

2002 (5)

2001 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

2000 (4)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. J. Butler and M. S. Malcuit, “Diffraction properties of highly birefringent liquid-crystal composite gratings,” Opt. Lett. 25, 420–422 (2000).
[CrossRef]

1999 (2)

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

1997 (1)

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Adams, W. W.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

An, X.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

Ay, S.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

Barna, S.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

Bowley, C. C.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Brandelik, D. M.

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Butler, J. J.

Chandra, S.

Crawford, G. P.

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

Du, F.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Ellabban, M. A.

I. D. Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006).
[CrossRef]

Emoto, A.

Fally, M.

I. D. Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006).
[CrossRef]

Fossum, E.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

Fuh, A. Y.-G.

Galstian, T.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004).
[CrossRef]

Galstyan, A. V.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004).
[CrossRef]

Hakobyan, R. S.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004).
[CrossRef]

Harbour, S.

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004).
[CrossRef]

Hirokari, T.

Ho, Y.-H.

Holmes, M. E.

M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
[CrossRef]

Horiguchi, S.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

Imai, H.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

Kakiuchida, H.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).

Karasawa, T.

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).

Kobayashi, F.

Lee, C.-R.

Liu, W.

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

Lu, Y.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Mabuchi, T.

Malcuit, M. S.

Minato, M.

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

Mok, F.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

Moriwaki, R.

Mumbru, J.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

Nakajima, M.

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. Π. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Ogiwara, A.

A. Ogiwara, M. Watanabe, and R. Moriwaki, “Formation of temperature dependable holographic memory using holographic polymer-dispersed liquid crystal,” Opt. Lett. 38, 1158–1160 (2013).
[CrossRef]

A. Ogiwara and M. Watanabe, “Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory,” Appl. Opt. 51, 5168–5177 (2012).
[CrossRef]

A. Ogiwara, “Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings,” Appl. Opt. 50, 594–603 (2011).
[CrossRef]

A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask,” Appl. Opt. 50, 6369–6376 (2011).
[CrossRef]

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays,” Appl. Opt. 49, 4255–4261 (2010).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).

Olenik, I. D.

I. D. Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006).
[CrossRef]

Ono, H.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).

Panotopoulos, G.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

Psaltis, D.

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

Rodriguez, M. A.

Seto, D.

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

Shepherd, C. K.

Siwecki, S. A.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. Π. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Taketomi, Y.

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).

Tazawa, M.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, and S. A. Siwecki, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. Π. Experimental investigations,” J. Opt. Soc. Am. B 19, 3004–3012 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Watanabe, M.

Wu, S. T.

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

Yamaguchi, N.

Yoshimura, K.

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

Zhou, G.

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Appl. Opt. (8)

A. Y.-G. Fuh, C.-R. Lee, and Y.-H. Ho, “Thermally and electrically switchable gratings based on polymer-ball-type polymer-dispersed liquid-crystal films,” Appl. Opt. 41, 4585–4589 (2002).
[CrossRef]

A. Ogiwara and T. Hirokari, “Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator,” Appl. Opt. 47, 3015–3022 (2008).
[CrossRef]

N. Yamaguchi and M. Watanabe, “Liquid crystal holographic configurations for ORGAs,” Appl. Opt. 47, 4692–4700 (2008).
[CrossRef]

A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Formation of holographic memory for defect tolerance in optically reconfigurable gate arrays,” Appl. Opt. 49, 4255–4261 (2010).
[CrossRef]

A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto, and H. Ono, “Effects of thermal modulation on diffraction in liquid crystal composite gratings,” Appl. Opt. 49, 4633–4640 (2010).
[CrossRef]

A. Ogiwara, “Effects of anisotropic diffractions on holographic polymer-dispersed liquid-crystal gratings,” Appl. Opt. 50, 594–603 (2011).
[CrossRef]

A. Ogiwara, M. Watanabe, T. Mabuchi, and F. Kobayashi, “Holographic polymer-dispersed liquid crystal memory for optically reconfigurable gate array using subwavelength grating mask,” Appl. Opt. 50, 6369–6376 (2011).
[CrossRef]

A. Ogiwara and M. Watanabe, “Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory,” Appl. Opt. 51, 5168–5177 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

C. C. Bowley and G. P. Crawford, “Diffusion kinetics of formation of holographic polymer-dispersed liquid crystal display materials,” Appl. Phys. Lett. 76, 2235–2237 (2000).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Evolution of anisotropic reflection gratings formed in holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 79, 1420–1422 (2001).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Seto and M. Watanabe, “A dynamic optically reconfigurable gate array-perfect emulation,” IEEE J. Quantum Electron. 44, 493–500 (2008).
[CrossRef]

J. Appl. Phys. (2)

Y. Lu, F. Du, and S. T. Wu, “Polarization switch using thick holographic polymer-dispersed liquid crystal grating,” J. Appl. Phys. 95, 810–815 (2004).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (4)

M. Watanabe and F. Kobayashi, “Dynamic optically reconfigurable gate array,” Jpn. J. Appl. Phys. 45, 3510–3515 (2006).

A. Ogiwara, H. Kakiuchida, M. Tazawa, and H. Ono, “Analysis of anisotropic diffraction gratings using holographic polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 7341–7346 (2007).

A. Ogiwara, M. Minato, S. Horiguchi, H. Ono, H. Imai, H. Kakiuchida, and K. Yoshimura, “Diffraction properties of anisotropic volume gratings formed in polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 47, 6688–6694 (2008).

T. Karasawa and Y. Taketomi, “Effects of materials system on the polarization behavior of holographic polymer dispersed liquid crystal gratings,” Jpn. J. Appl. Phys. 36, 6388–6392 (1997).

Opt. Commun. (1)

A. V. Galstyan, R. S. Hakobyan, S. Harbour, and T. Galstian, “Thermal modulation of diffraction in near infrared sensitive holographic polymer dispersed liquid crystals,” Opt. Commun. 241, 23–28 (2004).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. E (2)

I. D. Olenik, M. Fally, and M. A. Ellabban, “Temperature dependence of optical anisotropy of holographic polymer-dispersed liquid crystal transmission gratings,” Phys. Rev. E 74, 021707 (2006).
[CrossRef]

M. E. Holmes and M. S. Malcuit, “Controlling the anisotropy of holographic polymer-dispersed liquid-crystal gratings,” Phys. Rev. E 65, 066603 (2002).
[CrossRef]

Proc. SPIE (3)

J. Mumbru, G. Zhou, X. An, W. Liu, G. Panotopoulos, F. Mok, and D. Psaltis, “Optical memory for computing and information processing,” Proc. SPIE 3804, 14–24 (1999).
[CrossRef]

J. Mumbru, G. Zhou, S. Ay, X. An, G. Panotopoulos, F. Mok, and D. Psaltis, “Optically reconfigurable processors,” Proc. SPIE CR74, 265–288 (1999).
[CrossRef]

J. Mumbru, G. Panotopoulos, D. Psaltis, X. An, F. Mok, S. Ay, S. Barna, and E. Fossum, “Optically programmable gate array,” Proc. SPIE 4089, 763–771 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical information processing system by an ORGA comprising a gate-array VLSI, a holographic memory, and a laser diode array.

Fig. 2.
Fig. 2.

Optical setup for fabricating a HPDLC memory using a laser interferometer with a photomask.

Fig. 3.
Fig. 3.

Temperature dependence of diffraction efficiencies of HPDLC gratings fabricated by isotropic monomer mixtures with various nematic LCs: (a) TL204, (b) E44, (c) BL006, and (d) LC diacrylate monomer with nematic LC (MLC7023) at a rubbed direction of 0°.

Fig. 4.
Fig. 4.

Schematic illustrations to explain thermal modulation of diffraction efficiencies based on the N–I transition of nematic LCs in LC composites: (a) isotropic monomer mixtures with various nematic LCs (TL204, E44, and BL006) and (b) LC diacrylate monomer with nematic LC (MLC7023).

Fig. 5.
Fig. 5.

Effects of thermal modulation on the context images for the AND circuit reconstructed under various temperatures: (a) 25°C, (b) 75°C, and (c) 150°C in the HPDLC memory fabricated by the LC diacrylate monomer with the nematic LC (MLC7023) at a rubbed direction of 0°. The photographs A1 to C1 correspond to the configuration context for the AND circuit, and the sharp projections in the images A2 to C2 correspond to the diffraction efficiency for the reconstructed intensity pattern.

Fig. 6.
Fig. 6.

Optical system for the configuration generation by reconstruction using the HPDLC memory under thermal modulation condition: (a) block diagram of the experimental system and (b) photograph of three-dimensional alignments for the HPDLC memory on a glass heater unit placed in front of the ORGA-VLSI.

Fig. 7.
Fig. 7.

Temperature dependence of the configuration periods in the optical reconfiguration results for the AND circuit.

Tables (1)

Tables Icon

Table 1. Recipes for LC Composites Composed of Nematic LC, Monomer, Photoinitiator, and Coinitiatora

Metrics